
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
APPLICATION OF FAULT-TOLERANT COMPUTING
FOR SPACECRAFT USING COMMERCIAL-OFF-THE-

SHELF MICROPROCESSORS

by

Susan E. Groening
and

Kimberly Davenport Whitehouse

June 2000

Thesis Co-Advisors: James B. Michael
Alan A. Ross

Approved for public release; distribution is unlimited

LUG QUALITY INSPBCIHD 4

20000807 074

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average ! hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork
Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) REPORT DATE
June 2000

TITLE AND SUBTITLE:
Application Of Fault-Tolerant Computing For Spacecraft Using Commercial
Off-The-Shelf Microprocessors

5. AUTHOR(S)
Greening, Susan E. and Whitehouse, Kimberly Davenport

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

N/A

REPORT TYPE AND DATES COVERED

Master's Thesis

5. FUNDING NUMBERS

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy or
position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
Low availability, high cost, and poor performance of radiation hardened (rad-hard) equipment has driven the market to rely

on commercial-off-the-shelf (COTS) equipment for the computing needs of today's spacecraft. This thesis describes the tailoring of a
COTS embedded real-time operating system and design of a human-computer interface (HCI) for a triple modular redundant (TMR)
fault-tolerant microprocessor for use in space-based applications. One disadvantage of using COTS hardware components is their
susceptibility to the radiation effects present in the space environment, and specifically, radiation-induced single-event upsets (SEUs).
In the event of an SEU, a fault-tolerant system can mitigate the effects of the upset and continue to process from the last known
correct system state. The TMR basic hardware design used for this research is an acceptable fault-tolerant design candidate for the
main processor for space-based applications. We found that a COTS embedded real-time operating system could be tailored to
support the TMR hardware. The HCI accepts serial data from the TMR, correctly identifies the source of the error, allows for
processor mode selection and provides system- and board-level reset capabilities. The tailored operating system combined with the
HCI is a viable software implementation to support hardware-based fault-tolerant computing in a space environment.

14. SUBJECT TERMS
Fault Tolerance, Embedded Operating System, Human-Computer Interface,
Modular redundant hardware, Spacecraft Design

Triple
15. NUMBER OF PAGES

167

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

THIS PAGE INTENTIONALLY LEFT BLANK

11

Approved for public release; distribution is unlimited

APPLICATION OF FAULT TOLERANT COMPUTING FOR SPACECRAFT
USING COMMERCIAL-OFF-THE-SHELF MICROPROCESSORS

Susan E. Groening
Lieutenant, United States Navy

B.A., University of Florida, 1989
and

Kimberly Davenport Whitehouse
Captain, United States Marine Corps

B.S., University of Florida, 1990

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

Authors:

NAVAL POSTGRADUATE SCHOOL
June 2000

VIMASA &S?JjuAjeA*j n

Approved by:

Susan E. Groening "

' Kimberly Davenport Whitehouse

James B. Michael, Thesis Co-Advisor

Alan A. Ross, Thesis Co-Advisor

^Lc
Dan Boger,

Department of Computer Science

in

THIS PAGE INTENTIONALLY LEFT BLANK

IV

ABSTRACT

Low availability, high cost, and poor performance of radiation hardened

(rad-hard) equipment has driven the market to rely on commercial-off-the-shelf (COTS)

equipment for the computing needs of today's spacecraft. This thesis describes the

tailoring of a COTS embedded real-time operating system and design of a human-

computer interface (HCI) for a triple modular redundant (TMR) fault-tolerant

microprocessor for use in space-based applications. One disadvantage of using COTS

hardware components is their susceptibility to the radiation effects present in the space

environment, and specifically, radiation-induced single-event upsets (SEUs). In the event

of an SEU, a fault-tolerant system can mitigate the effects of the upset and continue to

process from the last known correct system state. The TMR basic hardware design used

for this research is an acceptable fault-tolerant design candidate for the main processor for

space-based applications. We found that a COTS embedded real-time operating system

could be tailored to support the TMR hardware. The HCI accepts serial data from the

TMR, correctly identifies the source of the error, allows for processor mode selection and

provides system- and board-level reset capabilities. The tailored operating system

combined with the HCI is a viable software implementation to support hardware-based

fault-tolerant computing in a space environment.

THIS PAGE INTENTIONALLY LEFT BLANK

VI

TABLE OF CONTENTS

I. INTRODUCTION ...1
A. THE SPACE ENVIRONMENT 1

1. Gravity 1
2. Atmosphere 1
3. Vacuum 2
4. Micrometeoroids and Space Junk 3
5. Radiation ,3
6. Charged Particles 3

B. BACKGROUND 4
1. Radiation Hardened Devices 4
2. Fault Tolerance 5

C. PURPOSE 9
D. THESIS ORGANIZATION 10

II. OPERATING SYSTEM SELECTION 13
A. OPERATING SYSTEM SELECTION 13

1. Definitions 13
2. Buy vs. Build 14
3. Characteristics of a Real-time Operating System 15
4. Criteria for Selection of a Real-time Operating System 17

a. Processor Support. 18
b. Portability 18
c. Scalability 20
d. Multiprocessor Support 20
e. Extended Services 21
f. Vertical Applications 21
g. POS1X Compliance 21
h. Language Support 22
i. Development Environment 23
j. Licensing and Cost 23

B. OBSERVATIONS 24

III. HUMAN COMPUTER INTERFACE DESIGN 27
A. OVERVIEW 27
B. NEEDS ANALYSIS 30
C. USER ANALYSIS 31
D. TASK ANALYSIS 32
E. CONCEPTUAL DESIGN AND VISUAL MODEL 34

1. Reviewer Analysis 36
2. Resultant Changes 39
3. Observation 40

vii

F. PROTOTYPE 40

IV. HUMAN COMPUTER INTERFACE RAPID PROTOTYPE
DEVELOPMENT AND TESTING 43
A. PROTOTYPE DEVELOPMENT ZIZZIZZ 43

1. Rapid Prototype Revision 43
a. UART 44
b. FPGA.... ZZ 44
c. First-In-First-Out (FIFO) registers 45
d. TMR processors 45
e. Voter 45
/. EPROM. ZZZZZZZ45

2. Rapid Prototype Design .. 49
3. Modal Dialog Boxes 50
4. Error Detection 56
5. HCI Testing 59

B. DISCUSSION ZZZZZZI<S3
1. Test Results ZZ 63
2. Value of Storing Register Contents 63

V. BOARD SUPPORT PACKAGE 65
A. BACKGROUND ZZ." 65
B. CREATING A BSP ZZZZ 67

1. Basis of Development . . 69
2. BSP Pre-kernel Initialization Code 71
3. Start a Minimal VxWorks Kernel and Add the Basic Drivers 75
4. Start the Target Agent and Connect the Tornado Development

Tools 76
5. Complete the BSP ZI 77
6. Generate a Default Project for the New Project Facility 77

C. DISCUSSION. 78

D. LESSONS LEARNED ZIZ 78

VI. CONCLUSION AND FUTURE DIRECTIONS 81
A. CONCLUSION. IIIIIII81
B. FUTURE DIRECTIONS IIIIIII82

APPENDIX A. TMRINTERFACECLASS JAVA . 85

APPENDIX B. READERTHREAD.JAVA 103

APPENDIX C. BUILDDATATHREAD 109

APPENDIX D. FIFOBUFFERJAVA 125

APPENDIX E. TMRTESTPANEL.JAVA 129

APPENDIX F. BUILDING A PROJECT FROM A NEW BSP 141

LIST OF REFERENCES 147

vm

INITIAL DISTRIBUTION LIST 149

ix

THIS PAGE INTENTIONALLY LEFT BLANK

LIST OF FIGURES

Figure 1-1. TMR Concept 8
Figure 3-1. Flow Chart for User Scenarios 1 and 2 38
Figure 4-1. TMR Hardware Design 44
Figure 4-2. Revised Flow Chart 48
Figure 4-3. "Welcome" Dialog Box 51
Figure 4-4. "Select Processor Mode" Dialog Box 51
Figure 4-5. "Verify Processor Mode" Dialog Box 52
Figure 4-6. "Execute Program" Dialog Box 52
Figure 4-7. "TMR Testbed Main Screen" 53
Figure 4-8. "Reset Confirmation" Dialog Box 54
Figure 4-9. "Reset" Dialog Box 54
Figure 4-10. "Save History Information" Dialog Box 55
Figure 4.11. Array Comparison Logic to Determine Error Processor 58
Figure 4-12a. High Level Example of Test Data Stream After Error Detected 59
Figure 4-12b. Individual Processor's Data Stream 59
Figure 4-13. Header Format 60
Figure 4-14. FIFO Register Format for Each Processor 61
Figure 5-1. Host Tools Communication 66
Figure 5-2. Hardware Dependent and Independent Software 68
Figure 5-3. Pre-kernel Initialization Sequence 71

XI

THIS PAGE INTENTIONALLY LEFT BLANK

xn

LIST OF TABLES

Table 3-1. Conceptual Design 35

Xlll

THIS PAGE INTENTIONALLY LEFT BLANK

xiv

ACKNOWLEDGMENTS

Susan E. Groening:

Thank you, my Heavenly Father for your unending love, patience and guidance.
Thank you, my loving husband, Rick, for your devotion and generosity when you had to
carry it all. Thank you, my wonderful children, Matt, Zach, and Katie for your
understanding when mom had to be at school. Thank you, my mother, Marjorie Owens,
for making me believe in myself. Thank you, Kim, for being not only a thesis partner, but
a friend.

A sincere thank you to Dr. Bret Michael, Dr. Alan Ross, and LCDR Chris Eagle
for their continuous guidance and support.

Kimberly D. Whitehouse:

First and foremost, I would like to give thanks and praise to my Heavenly Father.
"Trust in the LORD with all your heart and lean not on your own understanding; in all
your ways acknowledge him, and he will make your paths straight. " (Proverbs 3:5-6)
I would like to thank Professor Michael and Professor Ross for their guidance and
patience during the course of this thesis research. A special thank you to LCDR Chris
Eagle (a.k.a. the human compiler) who was always helpful, even after answering the
millionth programming question. To my thesis partner, Susan: thank you for keeping me
motivated, always being there to encourage me, and most importantly, for being a
wonderful friend! I would like to thank my parents, Bobby and Janice Davenport for all
their support and love. I would like to thank my children, Zachary, Alexis, Alison,
Caroline and Jacob for their love, patience, and understanding during all those long days
and nights while I was studying. Finally, I would like to thank my husband and my best
friend, Thomas, for his selflessness, love, and understanding.

xv

THIS PAGE INTENTIONALLY LEFT BLANK

xvi

I. INTRODUCTION

A. THE SPACE ENVIRONMENT

The Earth, the Sun, and the cosmos combined offer six different types of

challenges that affect the design of spacecraft. The challenges to design include gravity,

atmosphere, micrometeoroids and debris, vacuum, radiation, and charged particles

(Sellars 65). Designers of computers that will operate in space must take into account this

hostile environment and its affect on proper spacecraft operation. Though the focus of

our research is protecting against the effects of radiation and charged particles, for

completeness, each of the hazards is discussed briefly here.

1. Gravity

The Earth's gravitational pull dominates the objects that are close to it, but as

spacecraft get further and further away, the gravitational affects of the moon and the sun

begin to have an influence on the orbits of spacecraft. The size and shape of a

spacecraft's orbit is dictated by gravity. Booster rockets must first overcome Earth's

gravity to propel the craft into space. Once it is in orbit, gravity determines the amount of

propellant its engines must use to move between orbits or link up with other spacecraft

(Sellers 66).

2. Atmosphere

The Earth's atmosphere affects a spacecraft in low-Earth orbit (below 600

kilometers) in two ways:

1

-Drag, caused by atmospheric density, shortens orbit lifetimes. For example, drag

is used to slow the U. S. Space Shuttle from an orbital velocity of over twenty-five times

the speed of sound, to a runway landing at 225 m.p.h. Drag can cause a low-orbiting

spacecraft to be pulled back into the Earth's atmosphere.

-Atomic oxygen (O) is caused by oxygen (02) being ionized by the Sun's

radiation. 02, when ionized, splits into two (O) ions, atomic oxygen. These ions combine

with the metals of the spacecraft and results in oxidation, commonly known as rust.

Oxidation degrades spacecraft surfaces and reduce their lifetime (Sellers 67).

3. Vacuum

Beyond the Earth's atmosphere is the cold vacuum of space. This vacuum creates

three potential problems for spacecraft:

-Outgassing, a release of gasses from spacecraft materials, which is usually not a

problem. However, the released gasses can coat delicate sensors, such as lenses. When

that happens, outgassing can be considered destructive.

-Cold welding, which occurs between metal parts that have very little separation

between them. On Earth, air in any tiny gap allows the parts to move. However, in

space, the vacuum removes this air strip and the two metal parts fuse together. Designers

must select appropriate lubricants so they will not evaporate or outgas.

-Managing heat transfer by radiation. As radiation does not need a solid or fluid

medium, it is the primary method of moving heat into and out of the spacecraft. The

Sun's radiation can be destructive to continuously exposed components if they are not

properly cooled.

(Sellers 68).

4. Micrometeoroids and Space Junk

Space is full of natural debris such as dust, meteoroids, chunks of asteroids, and

manmade items like old booster segments and retired satellites. The likelihood of being

struck by an object that is only 1 millimeter in diameter is very slight (less than 1 in 1000)

over the planned mission of the spacecraft. But if a satellite is struck by a small particle

travelling at 7000 meters/second, it will create more energy than a rifle bullet and can be

destructive (Sellers 70).

5. Radiation

The radiation environment above the Earth's protective atmosphere is harsh. The

Sun's X-rays and gamma rays bombard spacecraft causing problems with overheating,

degradation, and damage to surfaces and electric components. In order to protect the

spacecraft against the harmful effects of radiation, the electronic components must be

shielded or hardened. (Sellers 71).

6. Charged Particles

Charged particles present perhaps the most dangerous aspect of the space

environment. Three primary sources for these particles include the solar wind and flares,

Galactic cosmic rays, and the Van Allen radiation belts. Regardless of their origin,

charged particles can harm spacecraft in three ways:

-Spacecraft charging occurs when charges build up on different parts of the

spacecraft as it moves through areas of concentrated charged particles. Once the charge

builds up, discharge can occur with disastrous effects such as damage to surface coating,

degrading of solar panels, or permanently damaging electronics.

-Sputtering is caused by the spacecraft being constantly bombarded by atomic

particles. Over time, sputtering can damage thermal coatings and sensors.

-Single event effects. A single charged particle can penetrate deep into the

interior of the spacecraft and disrupt its electronics. Each disturbance is known as a

single event effect. (Sellers 72).

The methods, systems, and ongoing research that serve to protect against the

hazards of gravity, atmosphere, vacuum are outside the scope of this thesis. Our focus is

on masking or mitigating the effects of radiation and charged particles on electronics;

therefore, a thorough discussion of these effects is included. Our research addresses a

method to provide a spacecraft's processor with continued capability to operate when

exposed to radiation and/or charged particles.

B. BACKGROUND

1. Radiation Hardened Devices

In the past, the most common approach to achieve survivability from the effects of

radiation and charged particles was through the use of radiation hardened (rad-hard)

devices. Rad-hard devices, used in conjunction with redundant hardware or error

detecting/correcting codes, provide protection for the satellite's computer against the

effects of radiation and charged particles.

Over the past 10 years, the number of suppliers of rad-hard devices has decreased

and the prices of the devices have risen as many manufacturers are switching from the

fabrication of rad-hard devices to the more lucrative commercial-off-the-shelf (COTS)

non-rad-hard devices. This shift in availability poses significant design issues for

Department of Defense (DoD) and commercial satellite ventures. As the rad-hard

components are becoming increasingly cost prohibitive, the technology lag that results

from the long procurement process to obtain the components prevents cutting-edge

implementations and retards development cycles.

Due to the high cost and lengthy procurement cycle of rad-hard devices,

current research focuses on the use of non-rad-hard hardware to provide survivability

from the radiation effects of space. An alternative to rad-hard SEU protection is

redundant hardware operating in lockstep, in conjunction with a specially designed

operating system, to provide the benefits of rad-hard components at a greatly reduced

cost.

2. Fault Tolerance

The concept of computer fault tolerance, the ability of a system to continue to

perform its intended purpose despite a hardware and/or software error, is not new and was

used in the earliest computers. The ED VAC, designed in 1949, was equipped with

redundant Arithmetic Logic Units (ALUs) in order to detect faulty processing of

algorithms. Hardware components at that time were known to be unreliable and prone to

failure (Storey 113). Today, fault tolerance techniques typically employ some

combination of redundancy in the hardware or the software.

Faults are usually characterized by their nature, duration, or extent. The nature of

a fault is related to its cause, either random or systemic. The usual cause of a random

fault is a hardware failure. Systemic faults occur as a result of a design flaw, either in the

requirements specification, system design, or the implementation of the design in

software or hardware. Faults can be described by their duration as well: permanent,

transient, or intermittent. A fault that remains until some action is taken to correct it is

referred to as a permanent fault. Transient faults sporadically occur and then disappear.

A frequent cause of transient faults can be the effects of atomic particles hitting the

memory chip. These types of faults can change the state of the computer without causing

lasting damage to the system. An intermittent fault occurs, disappears, and then reoccurs,

for example, a faulty solder joint. (Storey 114).

In a space environment, there are three types of radiation effects that can affect

integrated circuits and cause faults: Total Dose Effects, Dose Rate Effects, and Single

Event Effects. There are four sub-categories of Single Event Effects; Single Event Upset

(SEU), Single Event Latchup (SEL), Single Event Gate Rupture (SEGR), and Single

Event Burnout (SEB) (Payne 2). All of these radiation types, except SEU, are destructive

to integrated circuitry.

An SEU can be described as a type of transient fault. Because an SEU is simply a

bit flip caused by an ionized charge in a circuit, its effects will manifest as an erroneous

instruction or data. As this type of fault is not physically destructive to the system,

recovering from an SEU, which means catching the bit flip and correcting it, can be

achieved without rad-hard devices. This type of fault tolerance can be implemented with

configurable COTS software and hardware.

This research addresses the ability to obtain fault tolerance for a space system

using COTS software and redundant hardware created from non-rad-hard COTS devices.

Our thesis extends the research performed by John C. Payne, Jr., Naval Postgraduate

School, December 1998. LT Payne developed the design of a testbed for assessing

techniques used to resolve SEU-induced faults. The testbed computer employed a three-

CPU triple modular redundant (TMR) design. LT Payne selected the R3081 processor, a

COTS, single chip, RISC architecture machine with a 32-bit multiplexed address/data

bus.

The basic concept of TMR is fairly simple. It requires the triplication of the

hardware and performing a majority vote to determine the output of the system as shown

in Figure 1 (Payne 33).

Input 1
Module 1

Input 2 Module 2

Input 3 Module 3

-► Output

Figure 1-1. TMR Concept

This technique is considered to be a form of passive hardware redundancy in that

it masks the occurrence of faults. Fault tolerance is achieved through the use of majority

voting techniques without the need for fault detection or system recovery. If one of the

modules becomes faulty, the two remaining modules, which are assumed to be fault free,

mask the fault when the majority vote is performed (Storey 124). In a TMR system, an

SEU could cause one processor to branch to a completely wrong address. That processor

will continue to cause errors on all votes until it is reset to the same state of the two

correct processors.

Mr. David Summers, Naval Postgraduate School, has shown that the design

proposed by Mr. Payne is a good fault tolerant design candidate for the main processor

for space-based applications. He has designed and fabricated a breadboard model of the

system. Mr. Summer's research includes selection and programming of an FPGA (Field-

Programmable Gate Array) for the voting and control logic. Additionally, he has

designed and overseen the fabrication of the main circuit board to hold the system

components, as well as designed the memory space and interfaces.

C. PURPOSE

In order to achieve fault tolerance for space-based microprocessors, our research

will provide a design and implementation of software for the TMR microprocessor

system. The software will be designed specifically for use in testing and evaluation of the

TMR hardware in a laboratory environment, as well as in space-based applications to

address the effects of SEU on non-rad-hard devices.

Our research will produce two distinct, but highly coupled components: first, a

tailored COTS-based embedded operating system programmed to properly handle

interrupts initiated by the TMR circuitry and second, a human computer interface (HCI)

to the TMR system for testing and evaluation. The TMR voter will detect a bit flip in one

of the three processors and signal an interrupt to the operating system. The operating

system will process the interrupt by saving the register contents through the voter, thereby

correcting the fault.

The HCI provides the interface to the TMR system so that users can control the

operation and examine the results of errors and faults. The HCI has the functionality to

load the application to be tested onto the TMR, start the application running, and

throughout run-time, pause the TMR to permit examination of the states of the

processors. Following an interrupt, the HCI translates the raw data received from the

TMR and extracts information about the processors throughout the application run-time.

The HCI also logs the error data into a database and displays the errors to the user. The

HCI supports system- and board-level resets of the TMR during testing.

The complete system (the TMR, operating system, and HCI) will be tested in a

cyclotron laboratory environment during follow-on research. A cyclotron is a type of

particle accelerator that produces certain types of particles in a particular energy range.

During testing, the cyclotron will be focused on a single processor of the TMR so that the

particles it produces will induce bit flips in the radiated processor only. This will create

Single Event Upsets to test the masking effectiveness of the system. In order to properly

mask the fault, the hardware must recognize the error, the operating system will reload

the correct register information, and the HCI will display the error.

We envision that follow-on research will involve placing the experimental TMR

system onboard a satellite to study the effects of actual SEU in the space environment on

the system. The benefit of such research would be the development of small, relatively

economical satellites by showing COTS software products can support COTS hardware

to provide fault tolerance as a feasible alternative to radiation-hardened devices in space

applications.

D. THESIS ORGANIZATION

Chapter II describes the operating system selection process and the characteristics

of the selected operating system. Chapter I is a description of the design and

10

implementation of the HCI, while Chapter IV contains a discussion of testing and analysis

of the final HCI tools. Chapter V describes the tailoring of the operating system. The

conclusions and recommendations for future research are presented in Chapter VI.

11

THIS PAGE INTENTIONALLY LEFT BLANK

12

II. OPERATING SYSTEM SELECTION

A. OPERATING SYSTEM SELECTION

An operating system is the most important program that runs on a computer.

Every general-purpose computer must have an operating system to manage system

resources (e.g., files and devices). Operating systems perform many tasks, such as

recognizing input from the keyboard, sending output to the display screen, keeping track

of files and directories on a disk, and controlling peripheral devices.

For networked or distributed systems, the operating system has even more

responsibilities. It is like a traffic cop ~ it makes sure that different programs, users, and

computing platforms running at the same time do not interfere with each other. The

operating system is responsible for all aspects of management including such duties as

security and quality of service.

1. Definitions

Operating systems can be classified as follows:

• Multi-user: Allows two or more users to run programs at the same time. Some

operating systems permit hundreds or even thousands of concurrent users.

• Multiprocessing: Supports running a program on two or more CPUs.

• Multitasking: Allows more than one program to run concurrently.

• Multithreading: Allows different parts of a single program to run concurrently.

13

• Real-time: Allows applications to meet critical deadlines. General-purpose

operating systems, such as Windows NT and UNIX, are not real-time. Unlike

a general-purpose operating system, real-time operating systems utilize

preemptive priority-based scheduling, are relatively faster, and are small and

configurable (i.e., have a micro-kernel architecture).

Operating systems provide a software platform, on top of which other programs,

called application programs, can run. Generally, an application program must be written

to run on top of a particular operating system. However, recent innovations in higher

level languages permit some degree of portability (i.e., platform independence).

An embedded system is a specialized computer system that is part of a larger

system or machine. Typically, an embedded system is housed on a single microprocessor

board with the programs stored in Read-Only Memory (ROM).

2. Buy vs. Build

For this project, an important consideration was whether to buy a COTS operating

system or build a custom operating system. The source code of many real-time operating

systems exceeds 11,000 lines of code (Hawley 2). Although, the size of the image is more

important than lines of code, specifying, designing, implementing and testing an

operating system would have been unattainable within the time constraints of our

research. More importantly, the primary focus of this research is achieving fault tolerance

using the TMR. By maintaining the COTS vision for the development of the TMR

system and buying a commercial, real-time operating system that has been tested by the

14

development company and other customers, the system development process is

accelerated.

In order to select an operating system for this project, we investigated the

functionality and performance of several COTS real-time operating systems.

3. Characteristics of a Real-time Operating System

Real-time operating systems can be characterized as having the following

properties:

• Determinism

• Responsiveness

• Reliability

• Stability

An operating system is considered to be deterministic to the extent that it

performs operations at fixed, predetermined times or within predetermined time intervals.

When multiple processes are competing for resources and processor time, no system will

be fully deterministic. In a real-time operating system, process requests for service are

dictated by external events and timings. The extent to which an operating system can

deterministically satisfy requests depends on the speed with which it can respond to

interrupts and whether the system has sufficient capacity to handle all requests for

computational resources within the required amount of time (Stallings 430).

A related but distinct characteristic is responsiveness. Responsiveness is

concerned with how long, after acknowledgment, it takes an operating system to service

the interrupt (Stallings 430).

15

Reliability is typically far more important for real-time systems than non-real-time

systems (Stallings 431). Simple rebooting of the system may solve a transient failure in

non-real-time situations (e.g., word processing). A processor failure in a multiprocessor

non-real-time system may result in a reduced level of service until the failed processor is

repaired or replaced. But a real-time system must respond to events in real time (e.g.,

storage of streaming satellite telemetry data). Therefore, when a fault occurs in a real-

time system, the system must be able to continue to meet required deadlines.

Although the focus of our research is to provide an operating system and human-

computer interface for a fault-tolerant hardware implementation, in general, a real-time

system must be designed to respond to various failure modes. Stability is a characteristic

that refers to the ability of a system to fail in such a way as to preserve as much capability

and data as possible by meeting the most critical deadlines even when less critical

deadlines are not always met (Stallings 431). A real-time system will attempt to either

correct the problem or minimize its effects while continuing to run.

To address the above characteristics, current commercial real-time operating

systems typically include the following features:

• Hard Tasking (i.e., continues to operate when tasks fail)

• Fast context switching

• Small size (with its associated minimal functionality)

• Ability to respond to external interrupts quickly

• Multitasking with interprocess communication tools such as semaphores,

signals, and events

16

• Use of special sequential files that can accumulate data at a fast rate

• Preemptive scheduling based on priority

• Minimization of intervals during which interrupts are disabled

• Primitives to delay tasks for a fixed amount of time and to pause/resume tasks

• Special alarms and timeouts (Jun 4).

4. Criteria for Selection of a Real-time Operating System

Commercial-off-the-shelf RTOS environments emerged more than a decade ago.

Today, there are many to choose from. In the past, product comparisons centered on how

an RTOS minimized latencies. Because each product's target system requires real-time

deterministic response, minimizing latencies associated with external interrupts, kernel

services, and task switching was of primary importance.

Today performance is still important, although the improved cycle time of modern

microprocessors has diminished the significance of cycle time in many cases. Other

factors that should be considered when evaluating an RTOS include the following:

• Support for the target processor

• Portability to new processors

• Scalability to match varied application requirements

• Multiprocessor support

• Extended services such as network support

• Vertical application support (a vertical application is software for a specific

industry or group of computer users who share a set of well-defined needs)

17

• Standards(e.g., POSK (Portable Operating System Interface for UNIX))

compliance

• Language support

• Development environment (including integration of the tools)

• Licensing arrangements and price (Artysyn 2; Jun 8)

a. Processor Support

When selecting an operating system, the most important consideration is

whether the candidate operating system will provide long-term use for not only

the current processor, but also future ones. Learning to use a specific RTOS and

developing applications requires a significant investment in both time and money.

Ensuring reuse of the same environments on future products can be of paramount

importance to developers. It is important not only to consider whether an RTOS

supports the processors used for the current project, but also other processors

supported by each RTOS because future projects may require the use of a different

processor.

b. Portability

In the long term, the portability of an RTOS from one processor to another

is significant because faster processors with increased functionality will inevitably

emerge. Although an RTOS may change considerably due to such factors as

revolutionary hardware architectures and software development support, knowing

the amount of time an RTOS vendor spent porting to the most recent processor

18

can give an indication of how quickly the vendor will be able to port to new

microprocessors in the future.

Initially, all RTOSs were coded in assembly language to ensure that the

operating system adds the least amount of overhead possible to the application

and that the RTOS can support fast, deterministic response to external events.

Porting from one processor architecture to another is not trivial because library

routines are specific to a particular software and hardware architecture.

The RISC design discipline is based on the premise that code will be

written in a high-level language and that optimizing compilers will generate

efficient assembly language programs. As RTOSs became increasingly popular,

their vendors were faced with a combination of obstacles in porting to new

processors. The most important factor is the language in which the software is

written and the most portable language is C. C is the most portable because it is

usually the first language provided for a new system. The vendors chose C

language implementations for several reasons besides its wide-spread use,

including the inherent inefficiencies and unreliable nature of coding RISC

processors in assembly language as well as the portability of the code to many

different microprocessors.

Beginning in the 1980's, many vendors coded only time-critical

scheduling and task switching routines in assembly language, while over ninety-

five percent of the executive kernel was developed in the C language. This

strategy allows vendors to easily port the C executive to many processor families.

19

c. Scalability

While portability means that the OS has the ability to run on a variety of

hosts, scalability refers to how well a system can adapt to support various

applications and hardware in the existing system, as well as any future

requirements on the system. The language in which an RTOS is written affects

how well it can scale to support products. Scalability is particularly important for

designers that want to standardize on a single OS with confidence that they will

not outgrow the OS.

d. Multiprocessor Support

High-end performance-intensive applications may require more than a

scalable RTOS environment. In this case, perhaps a single processor is not

capable of serving the application. The developers must turn to multiple

processors and a software environment that simplifies the software development

tasks. Multiprocessor support may therefore influence the choice of RTOS

environment.

Ideally, an RTOS would allow development of the multiprocessor

environment as if it were a single high-performance processor. It should be

possible to develop individual tasks as if for a multitasking environment where

the RTOS environment handles task-to-task communications through queues and

semaphores, irrespective of whether the tasks execute on the same or different

processors.

20

e. Extended Services

Equally important as scalability and multiprocessor support, the number

and nature of the extended services offered with an RTOS can determine how

well the software accommodates an application. Rudimentary real-time kernels

typically only implement a multitasking scheduler, memory management services,

an interrupt handler, and communication and synchronization services such as

semaphores, mailboxes, and queues. A more robust RTOS environment can

include a plethora of I/O and file managers.

/. Vertical Applications

In addition to services common to most computer environments, today's

RTOSs have a built-in capability to seamlessly function with vertical applications.

For example, Simple Network Management Protocol (SNMP) and Motion Picture

Experts Group (MPEG) add ons, among others, can be purchased with some

RTOSs. These products may be supplied by the original equipment manufacturer,

but more commonly, are created by third party vendors in the growing vertical

applications market. This is a factor when considering future usefulness of the

designed system.

g. POSIX Compliance

POSIX is a set of IEEE and ISO standards that define an interface between

programs and operating systems. By designing to conform to POSIX, developers

have some assurance that their software can be easily ported to POSIX-compliant

21

operating systems. These systems include most varieties of UNIX as well as

Windows NT.

Even with vertical features and diverse capabilities in terms of scalability,

it is possible that a single RTOS will not support subsequent projects. When

moving from one RTOS to another, standards compliance facilitates the

transition. Any RTOS that complies with the POSIX standard would share a

standard application-programming interface (API).

POSIX is not an ideal solution for real-time systems as POSIX is derived

from requirements for Unix. These requirements include conventions that

compromise the real-time goal of minimal latencies. Despite the drawbacks,

many vendors attempt to comply with subsets of the overall standard to achieve

portability. The two sections of POSIX that apply to real-time systems are section

1003.1 that defines real-time system calls, and section 1003. IB that defines real-

time facilities, semaphores, message queues, and signals.

h. Language Support

Even without true embedded standards, the use of standard languages

produces highly portable applications. C is currently the most popular language

and it maximizes application portability. Additionally, object-oriented C++ with

its modularity enables reuse of existing code in future applications. Despite the

popularity and capabilities of C, there are valid reasons to use other languages.

For example, the scientific community has millions of lines of existing Fortran

code that implement proprietary numerical algorithms. The availability of

22

languages for a development project is limited to the languages that have been

ported to the chosen RTOS environment.

i. Development Environment

It is possible to minimize difficulties in moving from one RTOS to another

by using a common development environment (vendor-independent from the

RTOS) that not only includes language compilers, but also consists of debuggers,

editors, profilers, and configuration management and control systems. Despite the

advantages of using a development environment from a third party vendor, some

developers may find it more advantageous to use a totally integrated environment

from a single vendor.

j. Licensing and Cost

The final issue for consideration is the cost of the RTOS. The cost and

licensing issue decomposes into the development environment and the cost for

each run-time license that must be shipped with any product that embeds an

RTOS.

Run-time pricing is highly proprietary and is typically negotiated with each

RTOS vendor. The price of development licenses is more quantifiable, although

prices may be negotiable. Many vendors price their systems on a project basis

rather than selling a permanent license to use the software. Whether sold on a

project or permanent basis, the licenses are sold per user or seat.

23

B. OBSERVATIONS

After comparing embedded operating systems offered by different vendors,

VxWorks® from Wind River Systems offered all the requirements needed to provide the

level of performance required by the TMR system described in this thesis. Also, the

numerous features and functionality of VxWorks® will permit the TMR to have the

capability to become the basis of future generations of space-based computing systems.

Other candidate embedded operating systems that were evaluated and found to be

insufficient to meet the requirements oi the TMR system are addressed below.

Specifically, VxWorks®:

• Supports the processor selected for the TMR, the RISC 3081.

• Possesses the capability to be portable to new processors. This is a significant

factor to ensure the long-term capability of this TMR concept as new, faster

processors come on the market.

• Is very scalable, even across multi-vendor markets, which is important when

considering the TMR's usefulness in future projects.

• Provides multiprocessor support.

• Supports a full range of real-time features including fast multitasking,

interrupt support and both pre-emptive and round robin scheduling. Its

microkernal design minimizes system overhead and responds quickly to

external events.

24

• Supports a robust Java-based GUI development tool that can be used in the

HCI.

• In addition to VxWorks®, Wind River Systems also offers its Tornado™

development environment. Tornado™ includes:

a An integrated target simulator, which does not require any target hardware

or special configuration of the host system.

a An integrated version of the logic analyzer for the target simulator.

Q A project facility.

Q A debugger engine and GUI.

Other embedded operating systems that Were considered, but failed to meet all the

requirements were:

• JDT Monitoring System. Packaged with the R3081 processor, it has very

limited capabilities which would likely result in a greater development time

than VxWorks.

• QNX® RTOS, by QNX, was a very attractive option. Initial research,

however, revealed that QNX® RTOS does not support the RISC processors

this project is based upon.

• PSOSystem™, by Integrated Systems, was also researched. However, in

continuing with the reasoning that this TMR is being built for the long-term

we considered it to be important to use the same operating system that The

25

Naval Research Laboratory (NRL) has used in the past and is planning on

employing on future projects. Currently, NPS is collaborating on the TMR

with NRL. NRL is also using VxWorks® on several R3000 based processors,

namely the RISC 3081 Clementine, and the RH3000 and RISC 3081

USA/Argos. Also, NRL's Solid State Compressive Recorder (SSCR)

program is developing quicker processors with greater storage capability.

VxWorks® is the RTOS in the RH3000 based multiprocessor that NRL is

experimenting with for this program. The TMR is being developed with the

intent that it will be used in conjunction with future NRL projects. Utilizing

the same embedded operating system will help to ensure seamless integration.

After selection of the operating system, the design, coding, and testing of the HCI

as well as the configuration and coding of the operating system were completed

concurrently. These topics will be addressed in the following three chapters.

26

III. HUMAN COMPUTER INTERFACE DESIGN

A. OVERVIEW

Tornado is an integrated environment for software cross-development. VxWorks

is a real-time operating system that runs time-critical or embedded applications.

Although the Tornado development environment provides many tools for development

and debugging of VxWorks and its applications, upon completion and space deployment,

Tornado will be disconnected from the TMR. Therefore, Tornado will not have

connectivity to capture register data from the FIFOs after a voter-logic produced interrupt.

Also, since the TMR will lack connectivity with the Tornado tools, an alternative was

required to set the processor mode once the development and testing process is complete.

To meet the requirements to capture register data and set the TMR processor

mode, a human computer interface (HCI) was designed as part of the total system to be

ultimately tested in a laboratory environment while undergoing injected faults from a

cyclotron. Since the cost of cyclotron testing is very high, it is important that the

hardware and software undergoing the fault-tolerance experiment be pre-tested and

deemed reliable. In addition, the experimenters need an interface to the TMR system that

can assist them to maximize their time while using the cyclotron facility. The primary

purpose for the design of our HCI is to provide the user an intuitive interface, with a

shallow learning curve to ensure that the majority of their laboratory time will be spent

testing their computer product, and not learning a new interface.

27

The usability of any computer interaction product or application is inherently

coupled to the HCI. If the HCI is intuitive, easy to learn and use, the product or

application will likely have a favorable usability rating. Guidelines and user-interface

heuristics exist on how to best design interfaces for usability. For example, Shneiderman

(1997) proposes eight rules of interface design to best maximize the usability of an

interface. We selected these accepted rules as the foundation of the design phase, to

permit creation of an HCI that inculcates a sense of understandability and competence to

users. The eight rules are as follows:

• strive for consistency

• enable frequent users to use shortcuts

• offer informative feedback

• design dialogs to yield closure

• offer error prevention and simple error handling

• permit easy reversal of actions

• support internal locus of control

• reduce short-term memory load

Consistency can be obtained through the use of uniformity in the visual

representation of the objects in the interface. Consistency is not always possible to

achieve in every instance, but identical symbology and methods of interaction should be

employed throughout (Schmorrow, 16).

28

Shortcuts allow frequent users to reduce the number of interactions required to

obtain a desired result and also increase the rate of interaction (Schmorrow, 16).

Offering informative feedback not only helps to reduce frustration on the part of

the user, but is also a form of error handling and error prevention. Short, non-meaningful

messages such as "syntax error," provide very little useful information and should be

avoided. In order to provide useful feedback to the user, it is easy to become verbose

which is as bad as providing no feedback at all. Developing meaningful feedback creates

more work for the designer, but users appreciate the additional information to assist them

in using the system to test their product.

Another feedback design factor is to have the system appear to take blame for

errors. An example is the difference between using "illegal command" and

"unrecognized command." In the first message, the user is put on the defensive as the

user may feel he or she is at fault. In the second example, the error message shifts the

blame to the system, yet conveys to the user that the system cannot continue without

some new, correct input. The designer must walk a fine balance to create the correct

amount of feedback to inform, not overwhelm the user.

Grouping related actions in order to provide a natural flow through the interface

can enhance usability of a system. Humans, when learning a new task, will naturally try

to order the actions to assist in memorization. By having the interface provide the user

with a built-in and easily understood sequence of actions, the user will have an innate

familiarity with the outcome.

29

Whenever possible, a user should be able to reverse actions if they choose. Users

make mistakes and they should be allowed to easily recover from any error to reduce their

level of anxiety (Schmorrow 18).

The final consideration in the interface design, is the reduction of the short-term

memory load on behalf of the user. There is a limit on the amount of short-term

information a human can remember. The general rule is seven items, plus or minus two

items of information. Therefore, in order to keep the interface as simple as possible, the

amount of information the user is expected to remember must be kept to a minimum.

Assisting the user in this manner is achieved by the use of cues, mnemonics, and

standardized sequences of actions (Schmorrow 19).

B. NEEDS ANALYSIS

Understanding the basic rules helps us to design an interface with a shallow

learning curve, low probability of error, and high memorability to permit infrequent users

to test the level of fault tolerance afforded by a system. Conducting a needs analysis

complements the rules by ensuring that the features and functionality the user would

require during testing were represented.

The fault-tolerant TMR and embedded operating system are the foundation upon

which the testbed is being built. The testbed provides the designers with tools to test the

system in a controlled laboratory environment where a cyclotron will introduce particles

to generate Single-event upsets. The HCI has functionality which includes the following:

30

display various types of information to the user, including number of errors captured and

identity of the processor that experienced an upset; save error, register and bit data in

secondary storage; load an application; pause and restart the processors from the

keyboard; and save a history log of these events.

C. USER ANALYSIS

In order to design the interface for a typical HCI user, we developed a profile of

the likely users of the interface. The profile consists of a description of the user based on

significant characteristics that may affect the design. Items considered and included in

developing the user profile were the following:

1. What will they be using the interface for, and how often will it be used?

2. What is the user's general computer skill level?

3. Is the user familiar with the concepts of fault tolerance and the hazards of

operating in the space environment?

The typical user of the TMR testbed can be described as either female or male

(over the age of 18), and a professional computer scientist, engineer, or software engineer

who is developing software to be used on space-based systems. The user has requisite

knowledge of fault tolerance and is thoroughly familiar with the procedures, terminology,

and hazards of operating computer systems in the space environment, to include the

affects of radiation on integrated circuits. The user is presumed to be well-educated, very

comfortable with technology, and very adaptable to change. The user is assumed to be

31

proficient in English. The typical user has good computer skills and is very comfortable

using a mouse and keyboard. The user is knowledgeable and at ease with GUI

presentations of information.

The TMR system, in a laboratory environment, will be used during simulated

extended periods of radiation exposure on hardware or software. The typical user is

expected to spend less than one week per scheduled test. Additionally, due to the high

cost involved in these tests, a typical user may experience extended periods between tests,

potentially in excess of several months.

D. TASK ANALYSIS

The product of a task analysis is a hierarchical set of tasks that identifies the

functions of the system. In order to develop the listing, the basic tasks that the user

should be able to accomplish are identified. "Task analysis involves understanding the

required sequences, why they are required, what the information flow is, what the user

contributes to the procedure, and what can be automated with the objective of designing a

better procedure" (Hix 118). Task analysis is one of the most important aspects of

designing effective interfaces. The remainder of this section documents the task analysis

performed for this project.

Primary Task: Identify errors in fault tolerant hardware and software

Primary Subtask 1: Download test program

Primary Subtask 2: Start program

32

Subtask 2.A: Start program execution from beginning

Subtask 2.B: Set program runtime

Subtask 2.C: Restart program from beginning

Subtask 2.D: Continue program running from user halted

position

Subtask 2.E: Display execution confirmation

Primary Subtask 3: View SEU errors

Subtask 3.A: Display error information

Subtask 3.B: Close error window

Primary Subtask 4: View historical log

Subtask 4.A: Display log

Subtask 4.B: Display graphical information

Subtask 4.C: Close historical log

Primary Subtask 5: Save historical log to disk

Subtask 5.A: Select range of data to copy

33

Primary Subtask 6: Print historical log

Subtask 6.A: Select range to print

Subtask 6.B: Stop print

Primary Subtask 7: Stop program execution

Subtask 7.A: Ability to cancel stop-program-execution

command

Primary Subtask 8: Pause program

Subtask 8.A: Restart

E. CONCEPTUAL DESIGN AND VISUAL MODEL

Based on the task analysis, a conceptual design and a visual model were created.

The purpose of the design and model is to identify key concepts in the HCI to produce a

conceptual user-interaction design. The concepts include types of objects, relations

between objects, attributes of objects, and actions on the objects, relations and attributes.

These are shown in Table 3-1.

34

Objects Attributes of Objects Actions on Objects Actions on Attributes
Program a. Name of program a. Load program a. Read name of

b. Language of b. Start program program
program c. End program b. Find location of
c. Source of program program
d. Destination of
program

Data a. Structure of data a. Save data N/A
b. Origination of data b. Locate errors in
c. Destination of data data

c. Display data to
screen
d. Read data from
serial port
e. Write data to
database

Processor a. Mode of processor a. Start processors a. Set mode of
b. Name of processor b. Stop processors processor

c. Restart processors b. Read name of
d. Reset processors processor

History log a. Format a. Print history log
b. Save history log
c. Write to history
log
d. Display history log

N/A

Error N/A a. Calculate error
location
b. Display error
location to screen
c. Write error to
history log

N/A

Instruction Count number of
executed instructions

N/A a. Get instruction count

Timestamp N/A a. Get timestamp
b. Display timestamp

N/A

Table 3-1. Conceptual Design

35

Relations between objects:

• Program runs on processors

• Processors execute instructions

• Data results from errors

• Processors experience errors

• Errors generate data

• History log is made from errors

The visual model allowed test subjects, who fit the user profile, to evaluate a

simple paper representation of the HCI. Low-fidelity prototypes of the screens were

sketched based on the functionality outlined in the task analysis and the function points in

the conceptual design.

1. Reviewer Analysis

Two test subjects were selected from the typical user pool who were familiar with

the concepts of fault-tolerant hardware and the space environment. Using the low-fidelity

prototype and armed with minimal startup instructions, both test subjects were presented

with two scenarios. At this point in the research we wanted to examine all possibilities of

loading the applications, setting the processor mode and saving the test results, realizing

the scope would have to be later narrowed. In these scenarios, the users were asked to

use different filenames to save the test results to different locations. Not all the actions

they were asked to perform would be implemented in the final design. This allowed

observation of their ability to complete the given tasks while measuring the learning

curve. Figure 3-1 depicts the process flows for User Scenarios 1 and 2.

36

User Scenario 1: User loads program from a set of floppy diskettes (5). User

desires to test software in both operating modes (all three processors running or a single

processor running), with the ability to view the real-time history log on the screen. Upon

the completion of each test, the user wishes to write the results to a floppy diskette (using

different file names), then print a hard copy. User exits the program using labeled exit

button or exit option on file menu.

User Scenario 2: User loads program from a CD-ROM. User desires to test

software using only one operating mode (user's option). During program execution, user

is told that the on-screen history log is displaying information that suggests to the user

that the TMR is not running properly. Based on this information, the User opts to halt

execution and decide whether to restart and reload the applications, or resume execution.

Upon completion of the test, user wishes to write the results to a zip drive. User exits

program using labeled exit button or exit option on file menu.

37

Start

V
Load
Program

Select
Mode

No

Yes
Stop Program?^—

Run
Program

No

No / Program
Errors? >+-^—(Complete?

Yes

Save and
print files Yes

Yes

No No
*Q End J

Figure 3-1. Flow Chart for User Scenarios 1 and 2
(Original Design1)

1 See Figure 4-2 for the flow chart that resulted from the HCI redesign described
in Chapter 4.

38

2. Resultant Changes

Both test subjects performed well during the initial reviewer analysis and provided

feedback for improvement. The following changes were implemented in the design as a

direct result of the subjects' response to the low-fidelity prototype.

Change 1: Allow the user to print between each program test or after all tests are

complete. This will be accomplished by using a drop down box, which lists all files that

the user has created. The user can select the file he or she wishes to print. This change

was the result of the users desire to have the option to print the test results following each

program run.

Change 2: Allow the user to specify not only the file name, but also the location of

where to save the data. This will be accomplished by providing the user with a "Save

As" dialog box. This change was the result of the users desire to have the option to save

to the hardware location of their choice.

Change 3: Allow the user the option of disregarding (not saving) data collected

from the most recent program run. This will be accomplished by providing a radio-button

"Don't Save" if the user considers the data to be faulty and non-essential.

Change 4: Allow the user to load a test program from multiple diskettes. This

will be accomplished by prompting the user to insert diskettes in their logical sequence

via a dialog box. This change resulted from the realization that a user may bring their

application to the testbed on multiple diskettes, vice only one. As the prototype was

originally designed, the use of only one diskette had been considered.

39

Change 5: In the event of a system crash, inform the user via a dialog box to

contact the system administrator. This change was implemented due to the users' desire

for timely feedback during application testing. During the reviewer analysis, the users

were uncertain about the status of their application (e.g., was it still running, or had the

TMR crashed).

3. Observation

During the second test run, a system-generated error was intentionally introduced

to observe the user's response. Interestingly enough, both test subjects handled the error

in the same manner (by restarting the system) and more importantly, completed the

second test run in a shorter amount of time than the first test run. Although this seems

counter-intuitive, it is a positive indicator that the interface met the primary design goal,

which was a shallow learning curve to ensure the user's time was spent testing their

application and not learning a new interface.

F. PROTOTYPE

Following the user feedback from the low-fidelity testing, the next step in the

interface design was to create a rapid prototype. The prototyping approach produces an

early version of the system to demonstrate features of the final operational system. "With

rapid prototyping, the process of constructing prototypes is accelerated, so that the time

from beginning a prototype to evaluating user interaction with it is short enough to leave

time for substantial changes, if needed, to the product." (Hix, 250) Chapter IV discusses

40

in detail the iterative process undertaken to turn the low-fidelity prototype into a rapid

prototype.

41

THIS PAGE INTENTIONALLY LEFT BLANK

42

IV. HUMAN COMPUTER INTERFACE RAPID PROTOTYPE
DEVELOPMENT AND TESTING

A. PROTOTYPE DEVELOPMENT

Based on the results of the low-fidelity prototype testing, a rapid prototype for the

interface was created as the next step in the HCI design. To complete this phase of the

development, it was critical that the resulting prototype would correctly interface with the

TMR and display the required user information. Although the successful user-interaction

results from the low-fidelity testing indicated the first iteration had been satisfactorily

designed to meet the anticipated user interface requirements, the final hardware design

was not known, and was therefore not fully considered during the low-fidelity design

phase. With the final hardware design completion came a realization that a physical

hardware constraint existed that would require significant alterations to the low-fidelity

prototype design. This drastic revision became necessary to create the correct interface,

despite the unforeseen constraint, to permit correct interactions and correct system

operation between the user and the TMR. The constraint and revisions are described

below.

1. Rapid Prototype Revision

The TMR hardware, as designed, is represented by Figure 4-1 and described

below.

43

UART
L

FPGA

FIFO A

FIFOB

FEFOC

PROC A

PROC B

PROC C

V
o
T
E
R

VXWORKS

UART

Memory

EPROM

Figure 4-1. TMR Hardware Design

a. UART

UART is an acronym for universal asynchronous receiver-transmitter. The

UART is a computer component that handles asynchronous serial communication

via the serial port.

b. FPGA

An acronym for field-programmable gate array. The FPGA is a type of

logic chip that is programmed to support the TMR's integrated circuit design.

The FPGA supports the system controller that sets the mode of the processors, and

transfers data between the TMR and the HCI.

44

c. First-In-First-Out (FIFO) registers

FIFO registers capture the error data from the processors once the voter

recognizes an error.

d. TMR processors

PROC A, PROC B and PROC C, are connected in such a way that the

operating system acts as if there is only one processor in the system. The

processors operate in lock step from boot up by executing the same instructions in

parallel.

e. Voter

The processors are connected to the voter. The voter is comprised of two

FPGAs. After each instruction, the voter performs a majority vote on the signals

and passes them on to the memory where they are stored. If the voter detects an

error, meaning a bit has been flipped, an interrupt is signaled and the FIFO

registers begin collecting the processors' data.

/. EPROM

EPROM is an acronym for erasable programmable read-only memory.

EPROM is a special type of memory that can be reprogrammed. An EPROM

differs from a PROM in that a PROM can be written to only once and cannot be

erased.

The HCI, as originally conceived required the functionality to:

45

1. Allow a user to upload an application program onto the processors from the

HCI.

2. Set the processor mode.

3. Start the application running on the TMR.

4. Pause the application processes, to allow examination of system state or

register contents.

5. Stop the application from running.

6. Reset the processors to repeatedly run the application.

7. Display the errors received for the user to view.

8. Save the errors in a text log, and as actual data received.

However, as seen in diagram 4-1, the HCI's only interface with the TMR is to the

UART that is controlled by the system controller FPGA. The HCI has no physical

connection to the processors, thereby making it impossible to have any interface to upload

the application program onto the processors, or being able to pause or stop the processors.

Once this final hardware configuration and the limitations it imposed on the HCI design

became known, a reevaluation of the HCI design and its interaction with the TMR was

conducted. The purpose of the evaluation was to determine which, if any, of the original

eight requirements could be met with a redesigned HCI, instead of having to start a

completely new HCI design process.

The re-evaluation results showed that all the functionality requiring interface with

the processors, (loading an application program, starting the processors, pausing and

stopping the processors) could be performed by the VxWorks interface, see Figure 4-1.

46

The VxWorks interface, with its physical connection to the processors, along with the

Tornado Applications Development Kit, could easily perform the tasks that the original

HCI design could not. The newly designed rapid prototype would still have the ability to

set the mode, reset the board and the system as needed, find the errors in the transmitted

TMR register data, make a log of the errors found, and save the log and data for later

examination by the user. Therefore, the redesigned HCI, used in conjunction with the

VxWorks interface, could meet all the user requirements2. Admittedly, the final HCI

rapid prototype was not as elegant as the original design, however the hardware

configuration was both the impetus and the limitation for the final design. Figure 4-2

depicts the revised flow chart following the HCI redesign.

2 It was determined that the capability to directly print from the HCI was not a
requirement for proper testing and evaluation and that subtask was eliminated from the
design.

47

VxWorks:
Load
Program

VxWorks:
Run
Program

HCI:
Listen and
show errors

-^ ^

'HCI: \.
System or \ No

Board ResetV

Yes

/ HCI: >
v Save Log?

y^
End

\. / i k

Yes

^ T

HCI:
jUo

Figure 4-2. Revised Flow Chart

48

2. Rapid Prototype Design

With the new design, the rapid prototype development began. The first step was

to redesign the GUI to eliminate those portions of the original design that VxWorks

would perform and were no longer applicable to the HCI. The tasks deleted from the HCI

were the ability to upload a program, and pause and stop a program. The next step was to

provide additional information on the screen interaction windows to allow the user full

comprehension of the testing steps and procedures with respect to the two interfaces. The

interaction windows were designed to take into account the fact that the HCI and the

VxWorks interface take specific, ordered steps when starting the TMR, and to load and

run a program. Given the new design, the user must be able to interact with both of the

interfaces (i.e., HCI and VxWorks). The steps that the user must perform are as follows:

1. Select the processor mode from the HCI. The user would select Mode

A, which sends a signal to the system controller FPGA via the UART, to run all

three processors, or the user would select Mode B, which would indicate that only

Processor A, would be run. The processor mode had to be set before the

application program was loaded.

2. The user would then load an application program from the VxWorks

interface to the processors.

3. The user would execute their program from the VxWorks interface.

4. The HCI would listen for and display error data being sent from the

TMR.

49

5. The user would examine the register contents, system state and

application progress from the VxWorks interface.

6. The user would perform system-level resets and board level resets from

the HCI.

7. The user would save the history log from the HCI.

To make the steps the user was required to take as intuitive as possible, modal

dialog boxes were utilized on the HCI to provide specific information to the user. With

the modal boxes, the user had to acknowledge the box prior to taking the next step in the

test procedure. The drawback to this method is there was no way of checking to see if the

user understood and followed the steps before closing the box, or simply closed the dialog

box and ignored the information.

3. Modal Dialog Boxes

Appendix A contains the TMRInterfaceClass.java source code that was written to

implement the HCI. The following diagrams portray the modal dialog boxes that were

designed for use with the HCI to provide the user with correct information to test the

TMR.

50

[Hä Welcome E3

Welcome to the TMR Testbed. Press OK to continue, or Cancel to exit.

&§■'■ Cancel

Figure 4-3. "Welcome" Dialog Box

a. The "Welcome" Dialog box is used to identify the start of the test

procedure to the user.

^PROCESSOR MODE

Select Processor mode.

Only one processor will be radiated.
(After selecting mode, useVxWorks interface to load and run program.)

Mode A - Run 3 processors Mode B - Run single processor

Figure 4-4. "Select Processor Mode" Dialog Box

b. The "Select Processor Mode" box allows the user to select either Mode

A or B; Mode A sends a signal to the TMR that the user desires the application to

be loaded and run on all three processors. Should the user select Mode B, the

TMR will load the application on one processor only.

51

ggVerify Processor Mode and Program Loaded

Mode A selected.

Ensure your program is loaded using VxWorks.

Press Continue to proceed with testing, or Back to change mode

Continue! Back

Figure 4-5. "Verify Processor Mode" Dialog Box

c. This dialog box shown in Figure 4-5 allows the user to verify that he or

she had selected the mode they desired. If the user had meant to select Mode B,

this box gives the user the option to return to the previous dialog box to select

Mode B. Also, this box prompts the user to now use the VxWorks interface to

load the application program. ;

^EXECUTE PROGRAM

Execute your application now from the VxWorks interface.

Oli

Figure 4-6. "Execute Program" Dialog Box

52

d. The Execute Program dialog box prompts the user to execute the user's

program from the VxWorks interface.

FM

TMR History Log

■'

Mode A selected]
Listening for register data

SYSTEM LEVEL RESET

BOARD LEVEL RESET i

Figure 4-7. "TMR Testbed Main Screen"

e. The TMR Testbed Main Screen is always in the background during the

HCI's operation. The user cannot interact with the Main Screen when any of the

dialog boxes are present, but can see the contents of the History Log. The History

Log is updated with error information as errors occur. The System-Level Reset

and Board-Level Reset buttons are available to the user only when no dialog

boxes are open. The main screen can be closed, and the HO program terminated

by using the typical window closer, or the File=>Exit menu bar. The window-

closer and Exit menu items, when used to terminate the HCI program, also

possess a file saving capability to capture the history log.

53

mRESET CONFIRMATION

Continue with System Level Reset?

1VES, SYSTEM LEVEL RESET! NO RESET

Figure 4-8. "Reset Confirmation" Dialog Box

f. Once the user selects either the System-Level Reset button or the

Board-Level Reset button, the Reset Confirmation Dialog Box appears to allow

the user to verify whether they desire to reset the system. Should either the system

or board be reset, the program will be terminated. Used properly, this reset

operation is a desirable feature as it was foreseen that the user would have a need

to reset the TMR in some circumstances. However, an inadvertent reset is an

undesirable event in the testing process, so the option to select "no reset" is

included to permit continuation of the testing process.

PRESET

User initiated system reset.

OKI

Figure 4-9. "Reset" Dialog Box

54

g. This dialog box does not allow the user the choice of any options. It is

simply to inform the user that he or she had reset the system.

El SAVE HISTORY INFORMATION

Do you want to save the history log?

JVES, SAVE HISTORY LOG NO, DISREGARD HISTORY LOG

Figure 4-10. "Save History Information" Dialog Box

h. This dialog box allows the user to select either to save the contents of

the History Log that is displayed on the TMR Main Screen, or discard it. If the

user selects to discard the contents, then the user is given one more opportunity to

save before the log is deleted. If the user chooses to save the history log, then the

user sees a typical file-saver box. The user would enter the name he or she wants

to save the file under, and the HCI would save the file to the E: drive. During

program execution, the HCI stores the error data automatically to the database. If

the user does not want to save the data, it can be accessed and deleted.

A desirable feature in the final HCI product would be to allow the user the

option to run another test on the TMR after they have saved the History Log. This

could be accomplished by bringing the user back to the Select Processor Mode

Dialog Box (Figure 4-4) where they would follow the same steps as they

previously completed to run another test. This functionality was not implemented

55

in the rapid prototype. The rapid prototype exits the HCI program after the user

saves the History Log

4. Error Detection

Upon completion of the HCI rapid prototype, the next step was to develop

effective communications between the TMR and the HCI. Because the hardware utilizes

serial port communications and the HCI was written in Java, the logical choice for the

HCI's communication capability was the JA VAX Communications Package. The

JA VAX Communications Package contains all of the necessary interfaces to design a

serial port for the HCI. Using the predefined interfaces, vice creating a new

communications protocol, was deemed to be the best option because the JA VAX

Communications Package has been thoroughly tested and is well documented.

Additionally, there were simple examples available to provide a foundation to begin

building the communications interface for the HCI. Appendix B contains the

ReaderThread source code that was written to implement the communications

functionality for the HCI. ReaderThread was implemented as a thread.

Once running, the HCI creates a serial port connection using the ReaderThread

file. The ReaderThread created a listener to listen for incoming TMR error data, stores

the data into a queue, (Appendix D, FifoBuffer.java), and signals the program when data

has been received on the port.

After the communications interface was successfully designed and compiled, an

algorithm was developed to correctly identify the error (bit flip) that initiated the TMR

dump of the register contents. The solution requires an algorithm capable of comparing

56

the contents of the three processors to determine which bit has experienced the error. The

final solution is as follows:

1. The voter in the hardware examines the register contents after every cycle. If

the contents of the three processors do not exactly match, the HCI receives the contents of

those registers via the serial port.

2. Once error data is received on the serial port, the serial port listener awakens

and takes all of the error data, one byte at a time, and puts it into a synchronized queue.

After all of the register data from one error has been received and entered into the queue,

the serial port listener turns the error detection over to an error-detecting thread. The

listener begins listening for more error data.

3. The error detecting thread takes the error data out of the queue in the order it

was received and using nested for loops; puts the error data into three arrays, one array for

each processor's error data. Once the error data is in the arrays, the arrays are compared

using the "exclusive or" (A) operator. In Java syntax, the "exclusive or" is represented by

«A" The "exclusive or" operator returns a "zero" only if both sides of the comparison are

the same. Any difference in the two arrays would have resulted in a return other than

zero. Once the non-zero return is detected, indicating a mismatch, then it has to be

determined which of the two arrays the error had occurred in. This is conducted using a

process of elimination between the comparisons. The logic used is shown in Figure 4.11.

57

if (Array A A Array B) = = 0

then error is in Array C

else if (Array A A Array C) = = 0

then error is in Array B

else if (Array B A Array C) = = 0

then error is in Array A

Figure 4.11. Array Comparison Logic to Determine Error Processor.

4. To locate the exact bit that had been flipped, a bitwise comparison between the

array that contained the error, and an array that contained no errors was conducted. Each

bit was examined using a right bit shift operation. (Appendix C. buildDataThread.java,

and the findFlip() method, contain the actual code.) In this manner, the specific bit was

found.

5. After the bit is detected, an entry is made to the log on the user's screen which

indicates the time, the processor, register and bit that experienced the error. Additionally,

the error processor, register and bit are entered into an Access database table, TMR Data,

and the register contents from each error were entered into another database table,

Registers. A key, comprised of time and processor, ties the two databases together to

permit queries.

58

5. HCI Testing

To verify that the designed algorithm did properly identify the flipped bit, a test

program was created that generates simulated register data that contains a flipped bit.

The test program allows the tester to utilize a very simple GUI to signal to the program to

simulate an error from either processor A, B, or C. The test program then runs the

algorithm (Appendix E, TMRTestPanel.java) that randomly selects a processor, register,

and bit to represent the error. The test program generates a stream of data that contains

the simulated error data from one processor, and simulated error-free data from the other

two processors. The stream layout is shown in Figure 4-12.

Processor C Data Processor B Data Processor A Data

Figure 4-12a. High Level Example of Test Data Stream After Error Detected

D5 H5 D4 H4 D3 H3 D2 H2 Dl HI

Figure 4-12b. Individual Processor's Data Stream

Figure 4-12a shows the order in which the processors' error data is transmitted to

the HCI. Processor A was first, followed by Processor B, and then Processor C. Figure

4-12b show how the data stream for each individual processor is arranged. There is a

header (HI - H5) before the contents of each register (D1-D5). The 8-bit headers are

59

generated by the hardware and are designed to contain specific information about the data

that follows. See Figure 4-13 for a description of the header format.

^

Header Format

7 6 5 4 3 2 1 0

—^r~
Reserved
For future
Use

J ^~
FIFO
000-0
001-1
010-2
011-3
100-4

J V.

Processor
00-A
01-B
10-C

Figure 4-13. Header Format

The first two bits of the header identify the originating processor. The next three

bits identify the FIFO register, and the last three bits are reserved for future utilization.

The data blocks Dl - D5 contain the actual information from the registers. Even

though each FIFO register has the capacity to hold 4096 addresses, the TMR initially

utilizes only 823. This means that each FIFO register holds forty-one addresses and forty-

one items of data. Four of the five FIFO registers each hold 8 bits of the 32 bits of

register information. The remaining FIFO, FIFO 4, collects control information. Dl is

3 The 82-address capacity was an initial estimate based on known minimum
number of registers (not including the floating point registers) transferred during interrupt
handling. The final number of registers to be saved will increase when all registers are
included. A final number can be determined upon completion of future research
concerning the determinism of the operating system and its handling of interrupts.

60

the most significant byte, D2 is the next most significant byte, down to D4 which is the

least significant byte of the 32 bits. Figure 4-14 shows the FIFO registers format.

32 Bits

0

82

1023

■f ^

FEFOO FIFO 1 FDF02 FIFO 3 FIFO 4

(Dl) (D2) (D3) (D4) (D5)

Figure 4-14. FIFO Register Format for Each Processor

The test program generates a stream of data that represents the arrangement of the

TMR registers, as well as how the TMR transmits the data to the HCI. The TMR test

program also displays which bit it has randomly flipped to assist in development and

troubleshooting of the HCI.

To best test the HCI's error detection capability, the simulated data the HCI

received from the test program had to be as close in length and format to the actual TMR

data stream as possible. Also, the simulated data had to be generated at completely

61

random times, with completely random bits being flipped to represent an error. This was

accomplished by doing the following:

1. Eliminating the GUI from the test program that allowed the tester the

ability to generate an error at a specific time and from a specific processor.

Instead, a random number generator was put into place to select random

times, and a random processor. Since the test program already generated

the random register and bit, that was not altered.

2. Seven tests were run using the test program with the HCI. Tests one

through six generated 35 errors at random times, with the time interval

between errors received by the HCI being between two and seven seconds.

The HCI correctly detected every error, logged it to the screen and stored

the data in the Access database. Test 7 generated random errors for over

one hour to determine if the HCI could withstand a longer test. After one

hour, the HCI was still responding to the error data transmitted from the

TMR and detecting the bit flips, logging the entries, and storing the data in

the Access database. No ability to test the accuracy of the errors

discovered against the over 600 generated errors was available.

3. Two tests were conducted to determine whether the test program received

the system-level reset and board-level reset signals. In both instances,

when the test program received the signal to reset, data transmission was

halted, signifying that the test program correctly identified the reset signals.

62

B. DISCUSSION

1. Test Results

The error-free results of the testing between the test program and HCI indicate

that the HCI rapid prototype, as designed, could support the TMR in a laboratory

environment, with the TMR undergoing radiation testing. The HCI correctly identified

the flipped bit in the error data, and was able to correctly signal the test program to

perform a reset. The HCI correctly logged the error information and correctly saved the

register contents into a database for later analysis.

2. Value of Storing Register Contents

The information being stored in the Access database could have many useful

applications. Software developers, in the interest of creating more resilient software,

would be keenly interested in knowing if a particular piece of hardware consistently had

an error in a specific bit. This way, that troublesome register could be avoided. Another

potential application would be for designers of fault tolerant software who utilized the

TMR testbed to test the capability of their software in a radiation environment. Their

interest in the data would be in determining if their software caught and/or corrected all

the errors, rather that the fault tolerant TMR performing that task.

Examples of the types of information that could be ascertained from queries on

the Access database are which register or bit had the most errors, what percentage of the

errors did each processor experience, what is the distribution of errors across the registers.

63

The register contents in the Access database table Registers, are stored as integers.

Access possesses the capability to convert the integer to its bit representation should the

user need to display the data in bit format.

Once the HCI rapid prototype design and testing were complete and the hardware

design was finalized, the next step was to create a Board Support Package for the TMR

system. The details of this process are described in Chapter V.

64

V. BOARD SUPPORT PACKAGE

A. BACKGROUND

In order to prepare the embedded OS (VxWorks) for the target hardware (the

TMR), the Tornado development tools were utilized. These tools included the following:

Launch -Launch Tornado Tools

WindSh -Access target interactively

CrossWind -Source-level debugger

Browser -Display system information

Project Facility -Configure applications or VxWorks

WindView -Analyze multitasking application

Simulator -Simulate VxWorks target on host OS

The coding and building of the applications are completed on the host using the

Tornado tools. This includes editing and compiling/assembling/linking either within the

project facility or from the command line. The testing and debugging is done on the

target utilizing the target host tools, including loading, execution, source-level debugging,

and performance monitoring. The development cycle consists of iteratively writing and

compiling code on the host, downloading to target, testing code on the target, and going

back to the host for further writing and modification of the code.

65

The Tornado environment provides a full range of features. Tornado facilities

execute primarily on a host system, with shared access to a host-based dynamic linker and

symbol table for a remote target system. Figure 5-1 illustrates the relationships between

the principal interactive host components of Tornado and the target system.

Communication between the host tools and VxWorks is mediated by the target server and

target agent (Figure 5-1 Wind River Systems, Tornado 2).

HOST SYSTEM TARGET SYSTEM

Shell

Editor Debugger

Project Browser

Windview

Application

Target
Server

VxWorks

Target
J^ent

larget
Agent VxWorlcs

Tsrnor
Simu Is tor

Figure 5-1. Host Tools Communication

The target-host interface is composed of the following three elements: the target

agent, the target server, and the target registry which provides the link between the target

and host environments.

• The target agent is a scalable component of VxWorks that communicates with

the target server on the host system.

66

• The target server connects Tornado tools such as the shell and debugger with

the target agent.

• The Tornado registry provides access to target servers, and may run on any

host on a network.

For this research, the target application is a simple program. VxWorks Tools and

applications are hardware independent. The tie that connects the application and tools

with the hardware is the Board Support Package (BSP). The BSP consists primarily of

the hardware-specific VxWorks code for a particular target board. A BSP includes

facilities for hardware initialization, interrupt handling and generation, hardware clock

and timer management, mapping of local and bus memory space, and so on. BSPs also

include project files that facilitate creation of projects for bootable applications and

custom VxWorks images. Creating the BSP and writing the application code for the

operating system is the focus of this chapter.

B. CREATING A BSP

A BSP consists of the routines that provide VxWorks with its main interface to

the hardware environment. Figure 5-2 (Wind River Systems, BSP 12) illustrates the

components indicating the hardware-dependent and hardware-independent elements.

67

Hardware-Independent Software

Tools - Applications

1 I/O System VxWorks Libraries f TCP/IP 1
mm is

r

t k Jk

■: File
: System

A

1 ▼

Hardware-Dependent Software

V

J vwmf Kernel

r

i SCSI
Driver

-*-

BSP -► Network

^ tlllilllfl k. i k ' j 111

i r i r Hardware m r 'm rlii
1 SCSI Controller | Serial

Controller
Clock
Timer

j Ethernet
: Controller

.

Figure 5-2. Hardware Dependent and Independent Software

Creating a BSP is best completed in a series of graduated steps, each building on

the previous step. The steps are as follows:

1. Set up the basis of the development

68

2. Write the BSP pre-kernel initialization code

3. Start a minimal VxWorks kernel and add the basic drivers for timers, serial

devices, and an interrupt controller

4. Start the target agent and connect the Tornado development tools

5. Complete the BSP and include bootROMs, caches, etc.

6. Generate a default project for use with the new project facility

The following sections provide a detailed description of each of the steps listed above.

1. Basis of Development

The VxWorks/Tornado package we purchased was bundled with an idts381 BSP.

This BSP was a suitable starting point to create the BSP for the TMR system because it

supports the same processor. The reference BSP contained the code required for the

processor. However, the serial I/O chip and timers are different. Starting with the basic

code required for the processor and then adding board specific drivers reduced our

development time.

We were limited when selecting the technique for downloading the code to the

target. Since we do not have a ROM emulator or an in-circuit emulator (ICE), we are

required to use the download protocol supplied in the board vendor's debug ROMs.

Popular methods for testing the downloaded code include using an ICE, a logic

analyzer, or the board's native debug ROMs (given that they support breakpoints). Since

none of these methods are available, future work will require use of a debugging library

(flash an LED or transmit a character over a serial line in polled mode).

69

There are three choices for VxWorks image types and the details of the pre-kernel

initialization depend on VxWorks image type characteristics. They are as follows:

• ROMable image - Boot or "end-user" image contains bootstrap code which

copies VxWorks from ROM to RAM. The ROMable image can be either

compressed or uncompressed.

• ROM-resident image - Boot or "end-user" image which executes in ROM and

only copies the data segment into RAM. The image starts faster and uses less

RAM than the other ROMable images, but executes more slowly because the

text (executable) segment remains in ROM and therefore is limited by data

widths and lower memory access time of the EPROM.

• Downloadable image - "end-user" image that does not contain the bootstrap

code to copy itself out of ROM into RAM. A downloadable image requires a

separate program to obtain the image and load it into RAM. It cannot be built

using the project facility and must be configured and built using a BSP

mechanism.

The TMR contains adequate ROM (512KB) and RAM (1MB). Therefore, we

were not constrained by the RAM and could take advantage of the speed gained by

copying the entire image into RAM. For this reason, an uncompressed ROMable image

is the best choice for the TMR.

70

2. BSP Pre-kernel Initialization Code

The power-up bootstrap code consists of romInit() and romStart(). The

bootstrap code executes the following:

• The processor is forced to the starting address for romInit() in ROM

• romInit() resets the processor, initializes memory and performs all other

hardware initialization.

• romInit() then branches to romStart() which loads the ROM image into

RAM

The primary responsibility of the pre-kernel initialization is to place the hardware

in a quiet state so that the kernel can be activated. The pre-kernel initialization sequence

is described in Figure 5-3.

Power-up: romlnit()

1 Load Image

Segments into romStart()

RAM:

Code common
i r

To all VxWorks usrlnit()

Image types:

■► sysHwInit ()

-► kernellnit()

Figure 5-3. Pre-kernel Initialization Sequence

71

The romlnitO and sysHwInit() are BSP files that were written to reflect

hardware-specific features. The romStart(), usrlnit() and kernellnit() functions are

generic routines.

The Makefile was modified from the DDT version. The following macros are

required:

• TGT.DIR

The path to the target directory

• TARGETJDIR

The BSP directory name

• VENDOR

The board manufacturer's name

• BOARD

The board name

• ROM_TEXT_ADRS

The boot ROM entry address in hexidecimal

• ROM-WARM-ADRS

The boot ROM warm entry address in hexidecimal

• ROM_SIZE

The ROM area's size in hexidecimal

• RAM_LOW_ADRS

The address where VxWorks (the complete, linked VxWorks binary to be run

on the target) will be loaded

72

• RAM_HIGH_ADRS

The destination address in RAM when the boot image is copied from ROM to

RAM; this is the load point for the boot program for a downloadable image as

well as the start of the text segment. The boot program will eventually be

overwritten

• HEX_FLAGS

Architecture specific flags that will be the same as the reference BSP

• MACH.EXTRA

Any machine-dependent files

Among these macros, the only significant change from the IDT board was the

RAM_HIGH_ADRS macro. This macro identifies the destination address used when

copying the boot ROM image to RAM.

Since the TMR board does not include a sonic Ethernet chip, the config.h file was

modified to undefine INCLUDE_SN and SONIC_CONTENTION. Since the TMR does

not support non-volatile RAM (NVRAM), the correct bootline must be burned into the

boot ROMs or typed after every reset/power-up during development (Wind River

Systems, BSP 67). Additionally several macros dealing with NVRAM had to be set to

reflect the absence of NVRAM. The LOCAL_MEM_SIZE macro had to be changed to

reflect the 1MB of memory available in the TMR. According to Wind River Systems, a

common mistake of BSP writers is failure to realize that LOCAL_MEM_LOCAL_ADRS

is not zero; it has to be offset by the start of memory (Wind River systems, BSP 37). The

73

LOCAL_MEM_LOCAL_ADRS (in this case, Ox800f80000) was included with the

appropriate address in the config.h file. The RAMHIGH.ADRS macro had to be

changed to be consistent with the Makefile.

The sysLib.c file is the largest file and was implemented in phases. The required

functions in the pre-kernel initialization phase are as follows: sysModel(), sysBspRevO,

sysHwInitO, sysHwInit2(), and sysMemTop().

romlnits had to undergo significant changes. The IDT board contained significant

DRAM configuration code that had to be removed. At power-up the processor begins

execution at romInit(), which must be the first routine in the text of romlnits. For

warm reboots, the processor routine begins at romInit() plus an offset. Most of the

hardware initialization begins in the sysHwInit() located in sysLib.c. It was important

not to try to accomplish too much device initialization in the romlnits (Wind River

Systems, BSP 37).

sysALib.s contains the entry point for RAM-based images. The entry point,

syslnit(), performs the required minimal setup to transfer control to usrlnitO- sysInitO

generally masks processor interrupts and sets the stack pointer. It is similar for all

architectures and was not modified for the TMR.

romStart() located in bootlnitc contains the code to copy the text and data segments

from ROM and into RAM using vxWorks_rom. romStart() is generic for all hardware

platforms and should not be modified.

During implementation, we wanted to add debugging code to the generic (non-BSP)

configuration files. However, instead of modifying the generic files, a copy of the files

74

was moved to the BSP directory and modified. Specifically, config/all/usrConfig.c and

config/all/bootinitc were moved to the tmr3081 directory. The usrConfig.c was

modified to remove everything except the pre-initialization code, and the body of

usrRoot() is empty. The following lines were added to the Makefile after the definition

oftheHEX_FLAGS:

BOOTINIT =bootInit.c

USRCONFIG = usrConfig.c

3. Start a Minimal VxWorks Kernel and Add the Basic Drivers

A minimal kernel involves adding a few device drivers to the kernel initialization.

The only driver required by Vx Works is the timer (Wind River Systems, BSP 54). The

timer for the TMR will be programmed in the field programmable gate array (FPGA). A

driver was written for this timer and placed in the tmr3081 subdirectory. It is important

to place any custom drivers in the BSP directory itself and not the driver directory. This

prevents the custom drivers from being erased should it become necessary to reinstall

VxWorks. The board-specific initialization was performed in sysHwInit() and connected

to the interrupt by calling intConnect() in sysHwInit2().

Wind River Systems supplied the ns 16550 driver for the Serial Input/Output

driver. SIO chip board specific initialization was primarily accomplished in SysSerial.c.

The fundamental problem for the TMR BSP was the requirement to determine

what was on the address bus during an interrupt initiated by the voter logic. Once the

interrupt was received, the FIFO's begin sniffing the bus and dumping all information to

the HCI. It was imperative to find the VxWorks code for an interrupt to capture the

75

information that is provided to the HCI via the FIFO's. Additionally, upon interrupt,

VxWorks saves only a subset of the registers.

Initially, consideration was given to writing an Interrupt Service Routine (ISR)

within the VxWorks application. A prototype was developed that saved the contents of

all the registers upon interrupt. On closer evaluation, it became clear that this approach

would send incorrect register contents to the HCI. This occurs because the VxWorks

interrupt initiates the saving of a subset of registers. The process of saving the registers

moves register contents and therefore corrupts the desired output to the HCI of register

information at the time of interrupt. A C command at this point would provide the HCI

with register contents very different from the contents of the registers at interrupt. Clearly

the best solution would be to examine the VxWorks source code and provide the HCI

with a mapping of register data on the bus as a result of VxWorks saving the register

subset. In order to capture the entire contents of all the registers upon interrupt, an

Interrupt Service Routine must be written to acknowledge the interrupt and provide the

additional register information, including the floating point registers to the HCI. An ISR

must then be initiated with an intConnect() command. The ISR is the subject of future

work and is discussed briefly in Chapter VI.

4. Start the Target Agent and Connect the Tornado Development Tools

The debug agent within Tornado is initialized by a call to wdbConfig(). This call

is made at the very end of usrRootQ.

76

5. Complete the BSP

Very little additional work is required to complete the BSP. The TMR is a

relatively simple board without NVRAM, netv/ork devices, Memory Management Units,

Dynamic Memory Access configurations requirements.

6. Generate a Default Project for the New Project Facility

A project contains the source code files, build settings, and binaries that are used

to create a downloadable application, a custom VxWorks image, or a bootable

application. A downloadable application consists of one or more relocateable object

modules, which can be downloaded and dynamically linked to VxWorks, and then started

from the shell or debugger. A bootable application consists of an application linked to a

VxWorks image. The image can be configured to include or exclude components of the

OS, as well as resetting the operating parameters. A workspace contains one or more

projects (Wind River Systems, Tornado 72). The actual creation of the project took place

within the Tornado environment. The BSP is compiled and built within the project

facility. The project facility provides graphical, automated mechanisms for creating

applications that can be downloaded to VxWorks, for configuring VxWorks with selected

features, and for creating applications that can be linked with a VxWorks image and

started when the target system boots (Wind River systems, Tornado 71). Appendix F

discusses generation of a new project based on a BSP.

77

C. DISCUSSION

During the writing of the BSP, certain architecture considerations dictated the

requirements for the BSP and are briefly discussed here. The architecture design of the

CPU affects how it is used within the VxWorks system. The MIPS processors can run in

either big-endian or little-endian mode. However, Vx Works only supports MIPS in the

big-endian mode of operation. Although the MIPS processors include a minimal memory

management unit called a Transition Lookaside Buffer (TLB), VxWorks does not support

the use of a TLB. Additionally, the MIPS processors support three modes of operation:

user mode, kernel mode, and supervisor mode. The VxWorks kernel operates in kernel

mode at all times.

D. LESSONS LEARNED

Many lessons were learned during this thesis with respect to the embedded

operating system. Initially, we assumed that since VxWorks supported the RISC 3081

processor, a BSP would already exist to support the TMR board. The BSP however is

specifically written not only for the processor but also for the board itself including the

board specific chips (ethernet, timer, and serial input-output). The requirement to write a

BSP was not considered during the initial assessment and turned out to be the most

significant effort for the operating system.

Additionally, we did not initially believe the requirement existed to obtain the

VxWorks source code. However, to accurately predict the information gathered by the

FIFO's, it became necessary to acquire the source code from VxWorks. Clearly, had we

78

written our own operating system, this would not have been an issue since we would have

programmed the saving of the registers ourselves and would have controlled the order of

information on the address bus.

79

THIS PAGE INTENTIONALLY LEFT BLANK

80

VI. CONCLUSION AND FUTURE DIRECTIONS

A. CONCLUSION

The overall goal of this research was to explore the use of a COTS operating

system in conjunction with a fault-tolerant TMR COTS microprocessor in order to realize

a system that is able to withstand the rigors of operation in a space environment, in

particular, to detect and recover from single-event upsets. In addition, the research

involved the development of an HCI that provides both a graphical user interface display

and information storage mechanism.

The TMR operating system was configured and the HCI was designed primarily

for a ground-based operational testing of the voting logic and any software running on the

processors themselves. Currently, the operating system is configured so that an

application can be downloaded using Wind River System's Tornado Tools and run on the

TMR. The HCI supports both near real-time error detection and post-testing analysis of

the state of the three microprocessors. The TMR provides the capability to analyze the

success or failure of attempts to improve the performance of COTS microprocessors in

the space environment.

The original TMR testbed design was not intended to be used for space flight.

However, this research has moved the testbed one step closer to improving and preparing

the TMR design for operational use in fault-tolerant space-based microprocessors.

81

B. FUTURE DIRECTIONS

To further this research, an analysis must be conducted of the VxWorks source

code to determine the order the register data is saved when as interrupt occurs. If all the

desired registers are not saved, an ISR can be written to save any additional registers

required for analysis. When the Vx Works code is analyzed and, if required, ISR code is

written, the order of the data on the address bus can be correlated to the entries in the HCI

database. The HCI must rely on a predetermined order to permit the error-detection

algorithm to correctly identify the location of the flipped bit. Knowledge of the order of

the data is essential because that is the only way the HCI can identify where the error

originated. Depending on the outcome of the analysis of the VxWorks source code and

the order the register data is saved, the error-detecting algorithm may have to be altered.

After hardware testing and evaluation is complete, additional research includes

separately testing the operating system and the HCI rapid prototype with the actual TMR

hardware. Finally, complete system testing of the TMR hardware, operating system, and

HCI rapid prototype must be conducted. The system can then be scheduled for radiation

testing using a cyclotron. Preparation for eventual space flight includes research to

determine the optimal configuration of the operating system as well as burning the

operating system and desired application onto ROM.

82

Future work for the HCI includes optimizing the database storage code, and

research and development of desired query capabilities and a database interface to

provide information about the state of the processors. One of the benefits of storing the

data into an Access database is to provide the user with the ability to perform ad-hoc

queries on the database. However, an interface containing commonly used queries can be

designed for ease of use. The ability to open the Access database and perform queries on

demand while the program is running is necessary to permit real-time analysis of the

performance of the user's application during testing. Research into the storage and

retrieval capabilities and connectivity required for a long-term space flight is needed to

determine the hardware and processing requirements for large amounts of data collected

during these types of missions.

The use of two separate interfaces for testing purposes is not a desirable

implementation for use by the experimenters. Research to combine both the Tornado

Tools and the HCI onto a single laptop would be beneficial. With the current hardware

design, a PC or laptop could be configured with two serial ports; one line connecting the

VxWorks interface, and the other the HCI interface, to the respective serial ports on the

TMR board. Both the HCI and VxWorks user interfaces could be displayed on a split

screen. The user would be able to select the desired interface by gaining focus with a

mouse click. Neither the operating system nor the GUI should require significant

configuration changes to implement this design.

83

THIS PAGE INTENTIOANLLY LEFT BLANK

84

APPENDIX A. TMRINTERFACECLASS.JAVA

//TMRInterfaceClass.java

IIA class that instantiates a GUI for the user of the TMR HCI to utilize

//during test to interact with the TMR. The GUI will create two additional

//threads - one to set up a serial port connection to listen to the TMR, and

//one to build the data once it is received from the TMR.

//The GUI allow the user to reset the TMR board, or the whole system.

//Author: Susan Groening, LT, USN

//Date: 16 May 00

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

import java.awt.Color;

import j avax.comm. *;

import java.io.*;

import java.util.*;

public class TMRInterfaceClass extends JFrame {

//Class variable to create the GUI components

private final JFrame self;

private JMenuBar menuBar;

private JMenu file;

private JMenuItem exit;

private Container contentPane;

private Box box;

public JButton systemReset;

85

public JButton boardReset;

private JLabel welcome;

public JTextArea history;

private JLabel log;

private char mode = 'A';

public String output = "";

private String filename = "";

//A Queue object to be utilized to temporarily store the

//register data once the serial port receives it

private FifoBuffer queue = new FifoBufferQ;

//byte signals to be used to communicate with TMR

//DUMPFJPO is a future implementation and will not be

//used in this HCI

public static final byte RUNMODEB = 0;

public static final byte RUNMODEA = I;

public static final byte SYSTEMRESET = 2;

public static final byte BOARDRESET = 4;

//public static final byte DUMPFIFO = 8;

//A thread to set up serial communications with the TMR, listen for data,

//and put the data into the queue

private ReaderThread it = null;

public TMRInterfaceClass(){

86

//create main user window

super("TMR Testbed");

setBackground(Color.gray);

setSize(1025,750);

self = this;

//create a box to hold the components

//the box has vertical layout, components

//added in the order they are created

Box box = Box.createVerticalBox();

box.add(Box.createHorizontalStrut(10));

//create the content pane which all swing components require

contentPane = getContentPane();

III. create label for the hisiory log

log = new JLabel("TMR History Log");

log.setFont(new Font ("SansSerif", Font.BOLD, 36));

box.add(log);

111. add a textarea which will display the log

history = new JTextArea(15,15);

box.add(new JScrollPane(history)):

Iß. add a SYSTEM LEVEL RESET button

systemReset = new JButton("SYSTEM LEVEL RESET");

systemReset.setFont(new Font ("SansSerif", Font.BOLD, 20));

87

systemReset.setToolTipText("This will cause a system level reset. System
level reset and will reset the processors, UART and FIFOs.");

//this button will reset the processors, UART and FIFOs

systemReset.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e)

{

//dialog box to allow user to resume processing

Object[]options={"YES, SYSTEM LEVEL RESET","NO RESET"};

int n = JOptionPane.showOptionDialog(self, "Continue with System Level
Reset?", "RESET CONFIRMATION",

JOptionPane.DEFAULT_OPTION,JOptionPane.QUESTION_MESSAGE,null,options,o
ptions[l]);

if (n == JOptionPane.YES_OPTION){

//send signal to tmr to resume

System.out.println("send reset to tmr");

System.out.println("Sending Message: " + SYSTEMRESET + "= System
Level Reset");

rt.write(SYSTEMRESET);

JOptionPane.showMessageDialog(self,"User initiated system
reset.","RESET"

,JOptionPane.PLAIN_MESSAGE);

output +="\n User inititated system reset.";

history.setText(output);

history.setCaretPosition<output.length());

//send signal to tmr to stop altogether

System.out.println("Resetting system");

output += "\n TMR resetting system.";

88

programs aveHi story ();

configO;

}//end if

elsef

output += "\n No System Level Restart.";

history.setText(output);

history.setCaretPosition(output.length());

System.out.println("No System Level Restart.");

}//end else

}

}

);

box.add(systemReset);

HA. create the board reset button

boardReset = new JButton("BOARD LEVEL RESET ");

boardReset.setFont(new Font ("SansSerif, Font.BOLD, 20));

boardReset.setToolTipText("This will reset the FPGA, UART, FIFOs and
processor(s).");

//action for button will reset FPGA, UART, FIFOs and processors. This is the

//most drastic reset available to the user.

boardReset.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e)

Object[]options={"YES, BOARD LEVEL RESET'V'NO BOARD
LEVELRESET."};

89

int n = JOptionPane.showOptionDialog(self, "Are you sure you want to reset
the board? "

,"RESET

CONFIRMATION",JOptionPane.YES_NO_OPTION,JOptionPane.QUESTION_MESS
AGE,null,options,options[l]);

if (n == JOptionPane.YES_OPTION){

System.out.println("Sending Message: " + BOARDRESET +
"=BOARDRESET");

rt.write(BOARDRESET);

JOptionPane.showMessageDialog(self,"User initiated board
reset.","RESET"

,JOptionPane.PLAIN_MESSAGE);

output += "\n User inititated board reset.";

history.setText(output);

history.setCaretPosition(output.length());

System.out.println("Resetting board");

output += "\n Resetting board.";

history.setText(output);

history.setCaretPosition(output.length());

programSaveHistoryO;

configO;

}//end if

//user selects to continue running the program

else {

output += "\n No board reset.";

history.setText(output);

history.setCaretPosition(output.lengthO);

System.out.println("Continuing program");

output += "\n Continuing program.";

90

history.setText(output);

history.setCaretPosition(output.length());

}

}

);

box.add(boardReset);

//add box to content pane

contentPane.add(box);

//create the File menu for the GUI

//create a menu bar

menuBar = new JMenuBar();

//create a file menu

file = new JMenufFile");

file.setMnemonic(F');

//create an exit' option

exit = new JMenuItem("Exit");

exit.setMnemonic('Xr);

//add exit to File menu

file.add(exit);

exit.addActionListener (new exitliandler());

//add File to menu bar

menuB ar. add(file);

91

//set the menubar for the frame

setJMenuB ar(menuB ar);

addWindowListener(new Window Adapter()

{

public void windowClosing(WindowEvent e){

output +="\n Exiting";

history.setText(output);

history.setCaretPosition(output.lengthO);

System.err.println("Exiting Gracefully.");

System.exit(O);

}

public void windowClosed(WindowEvent e){

e.getWindow().setVisible(false);

}

});

//make reader Thread

it = new ReaderThread("COMl",queue);

rt.startO;

//make a buildData thread

buildDataThread bdt = new buildDataThread(this,queue);

bdt.startO;

}//end guiClass constructor

92

//Name: configO

//Return: void

//Parameter: none

//Purpose: Brings the user interface window to the screen to allow the

//user to select which processor mode they want to use.

public void configO {

do{

selectProcessorMode();

} while (!verifyRun());

}//end configO

//Name: set Visible

//Return: void

//Parameter: boolean

//Purpose: Sets the GUI visible once the program has been instantiated. This

//calls the opening welcome dialog box, then calls config to allow processor

//mode selection

public void setVisible(boolean show) {

super.setVisible(show);

if (show) {

welcome();

configO;

93

}//end if

}//end set Visible

//Name: welcome()

//Returns: void

//Parameter: none

//This function displays a dialog box that states the user is going to use the TMR

//testbed. User clicks OK and continues on. If user selects cancel, the program

//exits.

//**

public void welcome() {

int n = JOptionPane.showConfirmDialog(self, "Welcome to the TMR
Testbed."+

" Press OK to continue, or Cancel to exit."

"Welcome",JOptionPane.OK_CANCEL_OPTION,JOptionPane.PLATN_MESSAGE);

//if statement to perform an action depending on user's selections

if (n == JOptionPane.CANCEL_OPTION){

output += "\n Exiting";

history.setText(output);

history.setCaretPosition(output.lengthO);

System.exit(O);

}//end if

}//end welcomeQ

94

"};

//Name: selectProcessorMode()

//Returns: void

//Parameter: none

//This function allows the user to select Mode A, which will run all three
//processors at the same time, or Mode B, which will run only the radiated
//processor.

public void selectProcessorMode(){

//dialog window which offers up two choices, A or B

Object[]options={"Mode A - Run 3 processors","Mode B - Run single processor

int n = JOptionPane.showOptionDialog(self, "Select Processor mode.\n"+

" Only one processor will be radiated.\n"+

" (After selecting mode, use VxWorks interface to load and run program.)",

"PROCESSOR
MODE",JOptionPane.YES_NO_OPTION,JOptionPane.QUESTION_MESSAGE,null,op
tions,opions[l]);

//if statement to take action depending on user's selection

if (n == JOptionPane.YES_OPTION){

System.out.println("Sending Message:" + RUNMODEA + "= Mode A
selected");

rt.write(RUNMODEA);

mode = A';

System.out.println("Mode A selected");

output += "\n Mode A selected.";

history. setText(output);

95

history.setCaretPosition(output.length());

}//end if

else {

System.out.println("Sending Message: " + RUNMODEB + "= Mode B
selected");

rt.write(RUNMODEB);

mode = B';

System.out.println("Mode B selected");

output += "\n Mode B selected.";

history.setText(output);

history.setCaretPosition(output.length());

}//end else

}//end selectProcessorMode()

//Name: verifyRun()

//Returns: boolean

//Parameter: none

//This function will verify that the user has selected the run option. If they do

//not select run, it will return them to the select processor mode

public boolean verifyRun(){

Object[]options={ "Continue'V'Back"};
96

int n = JOptionPane.showOptionDialog(self, "Mode " + mode + " selected.\n" +

" Ensure your program is loaded using VxWorks.\n"+

" Press Continue to proceed with testing, or Back to change mode"

/'Verify Processor Mode and Program
Loaded",JOptionPane.YES_NO_OPTION,JOptionPane.QUESTION_MESSAGE,null,op
tions,opions[l]);

if (n == JOptionPane.YES_OPTION){

output += "\n Listening for register data.";

JOptionPane.showMessageDialog(self,"Execute your application now "+

" from the VxWorks interface.\n","EXECUTE PROGRAM"

,JOptionPane.PLAIN_MESSAGE);

history.setText(output);

history.setCaretPosition(output.length());

return true;

}//end if

else {

return false;

}//end else

}//end verifyRun

/ / rf* ?p *(C 3f* 3]£ *J* 5J» Jp ^* ^^ ^ ^t ^ ^ ^ ^* ^ ^ ^* «f* *T* *^ ^T* *T* *f* ^* *T* *i* *T" T* *1* *** V *i* V *1* *T* ^* *T* •T* *T* *T* *** *T* "T* ^* *^ ^ *** *t* *f* *!• T* *P "V* *l* ^ 'I* ^* T* *** *^ T* n*

//Name: programSaveHistoryO

//Returns: void

//Parameters: none

//This program allows the user to save the History text file from the run just
//completed.

97

private void programs aveHistory(){

File newFile;

FileOutputStream textfos;

OutputStreamWriter textosw;

BufferedWriter textbw;

PrintStream textps;

String historyLog ="";

InputStreamReader fileisr;

FilelnputStream someLogOutput;

BufferedReader someTextbr;

String logString = "";

Object [] optionsC = {"YES, SAVE HISTORY LOG","NO, DISREGARD
HISTORYLOG"};

int n = JOptionPane.showOptionDialog(self,"Do you want to save the history
log?\n (Aseparate prompt will give you the option to save register data.)", "SAVE
HISTORY FORMATION",

JOptionPane.YES_NO_OPTION,JOptionPane.QUESTION_MESSAGE,null,optionsCpt
ionsC[l])

if (n == JOptionPane.YES_OPTION){

JFileChooser saveFileChooser = new JFileChooser("E:\V);

try{

int return Value = saveFileChooser.showSaveDialog(this);

if(return Value == JFileChooser. APPRO VEJDPTION) {

File fileName = saveFileChooser.getSelectedFile();

PrintStream ps = new PrintStream(new FileOutputStream(fileName));

boolean afile = fileName.exists();

System.out.println(afile + "does it exist");//with this cofig, yes

98

boolean awrite = fileName.canWrite();

System.out.println(awrite + " can write");

String aname = fileName.getPath();

System.out.println(aname + " is path/filename");

StringReader stringReader = new StringReader(history.getText());

someTextbr = new BufferedReader(stringReader);

logString = someTextbr.readLine();

whileQogString != null){

ps.println(logString);

logString = someTextbr.readLine();

}

someTextbr.close();

}//end if

}

catch(IOException e){

System.err.println(e.toStringO);

output += "\n" + historyLog + "saved.";

history.setText(output);

history.setCaretPosition(output.length());

}//end if

else{

String historyLogA ="";

Object[]optionsD = {"GO BACK TO SAVE HISTORY
LOG'7'DISCARDHISTORY LOG"}

int xx = JOptionPane.showOptionDialog(self,"WARNING: Clicking Discard
HistoryLog' will cause history log to be lost.'V'DISREGARD HISTORY LOG",

99

JOptionPane.YES_NO_OPTION,JOptionPane.QUESTION_MESSAGE,null,optionsDpt
ionsD[l])

if (xx == JOptionPane.NO_OPTION){

}//do nothing end if

else{

JFileChooser saveFileChooser = new JFileChooser("E:");

try{

int return Value = saveFileChooser.showSaveDialog(this);

if(return Value == JFileChooser. APPRO VE_OPTION){

File fileName = saveFileChooser.getSelectedFile();

PrintStream ps = new PrintStream(new FileOutputStream(fileName));

boolean afile = fileName.exists();

System.out.println(afile + "does it exist");//with this cofig, yes

boolean awrite = fileName.canWrite();

System.out.println(awrite + " can write");

String aname = fileName.getPath();

System.out.println(aname + " is path/filename");

StringReader stringReader = new StringReader(history.getText());

someTextbr = new BufferedReader(stringReader);

logString = someTextbr. readLine();

while(logString != null){

ps.println(logString);

logString = someTextbr.readLine();

}

someTextbr.close();

}//end if

}//end try

catch(IOException e){

100

System.err.println(e.toStringO);

}

}//end else

}//end else

return;

}//end programSaveHistory

//Name: main

//Return: void

//Parameter: String {} args

//This is main. It calls the GUI constructor and then call setVisible()

public static void main(String[] args){

TMRInterfaceClass HCI = new TMRInterfaceClass();

HCLsetVisible(true);

}//end main

}//end guiClass Class

101

THIS PAGE INTENTIONALLY LEFT BLANK

102

APPENDIX B. READERTHREAD.JAVA

//ReadThread.j ava

//A class that instantiates a thread to set up serial communications

//during testing to interact with the TMR. The thread listens for data

//on the serial port, stores the received data in a queue, and then

//wakes up another thread to calculate the bit flip.

//Author: Susan Groening, LT, USN

//Date: 16 May 00

import java.io.*;

import java.util.*;

import javax.comm.*;

public class ReaderThread extends Thread implements SerialPortEventListener {

//class Variables

private boolean running = true;//keeps the thread alive

private FifoBuffer queue;//a queue object

public InputStream inputStream;

public OutputStream outputStream;

public SerialPort serialPort;

public byte b;

public ReaderThread(String port, FifoBuffer buf) {

queue = buf;

CommPortldentifier portld = null;

103

//identify the port to be used for the communications

try{

portld = CommPortldentifier.getPortldentifier(port);

} catch (NoSuchPortException nex) {

System.out.println(nex);

}

//try to open up the port

try{

System.out.println("Attempting to open port:" + port);

serialPort = (SerialPort) portId.open("ReaderThread", 2000);

System.out.println("Opened port: " + port);

} catch (PortlnUseException e) {

System.out.println(e);

}

//establish input and output streams

try{

inputStream = serialPort.getInputStream();

outputStream = serialPort.getOutputStream();

} catch (IOException e) {

System.out.println(e);

}

//add an event listener to listen for data on the port

try{

serialPort.addEventListener(this);

} catch (TooManyListenersException e) {

System.out.println(e);

}

serialPort.notifyOnDataAvailable(true);

//set the port parameters

try{

104

serialPort.setSerialPortParams(9600,

SerialPort.DATABrrS_8,

SerialPort.STOPBrrS_l,

SerialPort.PARITY_NONE);

} catch (UnsupportedCommOperationException e) {

System.out.println(e);

}

}//end ReaderThread

//Name: quit

//Return: void

//Parameter: none

//Purpose: A method to facilitate a way to stop the thread from running

//as needed. It is not implemented in ReaderThread

// public void quit() {

// running = false;

// } //end ReaderThread

//Name: run

//Return: void

//Parameter: none

//Purpose: A method to start a thread running.

105

public void run() {

while (running) {

try{

Thread.sleep(20000);

} catch (InterruptedException e) {

}

}//end while

}//end run

//Name: write

//Return: void

//Parameter: byte

//Purpose: A method to write a byte from the HCI to the TMR.

public void write(byte b) {

try{

outputStream. write(b);

} catch (IOException ex) {

}

}//end write

106

//**

//Name: serialEvent

//Return: void

//Parameter: SerialPortEvent

//Purpose: A method to handle serial port events.
//si:***

public void serialEvent(SerialPortEvent event) {

//any event that the serial port listener detects is passed to this

//method which then runs the event through the switch to determine

//how to handle the particular event

switch(event.getEventType()) {

case SerialPortEvent.BI:

case SerialPortEvent.OE:

case SerialPortEvent.FE:

case SerialPortEvent.PE:

case SerialPortEvent.CD:

case SerialPortEvent.CTS:

case SerialPortEvent.DSR:

case SerialPortEvent.RI:

caseSerialPortEvent.OUTPUT_BUFFER_EMPTY:

break;

case SerialPortEvent.DATA_AVAILABLE:

try{

if (inputStream.available() > 0) {

//synchronized is used to provide mutual exclusion

//to the queue during operations on the queue

synchronized(queue) {

while (inputStream.available() > 0) {

b = (byte) inputStream.read();

107

queue.put(b);

}//end while

queue.notifyAll();//wakes up any threads waiting on the queue

}//end lock

}//end if

} catch (IOException e) {

System.out.println(e);

}

break;

}// end switch

}//end serialEventO
}//end Class

108

APPENDIX C. BUILDDATATHREAD

//buildDataThread.j ava

//A class that instantiates a thread to find the error in the TMR data.

//This thread will take the received data out of a queue, put it into

//arrays, then locate the flip in the array. It will maintain the history

//log, as well as store the data into an Access database.

//Author: Susan Groening, LT, USN

//Date: 16 May 00

import java.util.*;

import java.util.Date;

import java.io.*;

import java.sql.*;

public class buildDataThread extends Thread {

//class variables

private FifoBuffer queue;

private TMRInterfaceClass HCI;

//variables to create the three arrays that will store the error data

//The size of the arrays can be changed, if the number of entries per

//each register increases or decreases.

public static final int NUM_REG = 41;

int registerData[j[] = new int[3][NUM_REG];

int addresses[][] = new int[3][NUM_REG];

byte control[][] = new byte[3][NUM_REG*2];

109

public boolean running = true;

//Connection con is the variable to establish a connection from the HCI to

//the Access database

private Connection con;

//Statement stmt is the variable used to make a Create Statement to update

//the Access database tables

private Statement stmt;

//varibles used to transmit information to the database in SQL queries

public String url;

private int time= 0;

private char errorProcessor;

private int errorRegister;

private int errorBit;

public int errorCount=0;

int bigCount = 0;

String key = " ";

String logTime ="";

public buildDataThread(TMRInterfaceClass gui, FifoBuffer buf) {

queue = buf;

HCI = gui;

}//end buildDataO

public synchronized void buildData(){// throws InterruptedException{

liO

key = (new Date()).toString();//get the current date and time to create

//a key for the database

logTime = key;//logtime will be used to display the time/date to the

//History Log

//using nested for loops, iterate through them and get a byte from

//the queue for each array element

//test://label to utilize a named break statement to exit if reset occurs

// to be utilized during future reset implementation

for (int i = 0; i < 3; i++) {//outer for loop will count the processors

for (int j = 0; j < 5; j++) {//middle for loop counts the fifos

byte header = queue.get(); //get the header byte from the queue

for (int k = 0; k < NUM_REG * 2; k++) {//the inner for loop will

//be used to populate the array

int reglndex = k / 2;

/*if (HCI.killIt){ //break out of loop if reset has occurred

System.out.println("Exiting for loop after reset");

clearArrays();

break test;

}

this for loop will be utilized once the reset capability has

been implemented.

*/

111

int b = queue.get();

b = b & OxFF;//gets rid of the negative sign

if(j=4){

control[i][k] = (byte) b;//this would be the control byte and

//we are not interested in that data

//at this stage of the HCI development

}//end if

else if ((k & 1) == 1) {//in the bit stream, the data items are

//in the odd numbered places (1,3,5,7)

//Therefore, if the data & 1 == 1, then

//the bit stream location is odd

//(& equals 1 when both are the same)

//This checks to see if we are storing

//addresses or data

if(j=0){

registerData[i][regIndex] = b;//puts the first byte of the

//number into the array

}

else {

registerData[i][regIndex] = (registerData[i][regIndex] « 8) I b;

} //if the number being put into the array

//is the 2nd, 3rd or 4th byte, then the

//existing number in the array is

//shifted left 8 bits and inclusive or (I)

//with the number already in the array,

//this builds the number into an integer

}//end else if

else {

if (j == 0) { //The number came from an even bit location

//in the register, and is therefore an

112

//address location

addresses [i][reglndex] = b;

}

else {

addresses [i][reglndex] = (addresses [i][reglndex] « 8) I b;

}

}//end else

}//end inner for

}//end middle for

}//end outer for

}//end buildData

//******************* *****i=* ***************** *********************

//Name: run()

//Return: void

//Parameter: none

//Purpose: To keep the thread running during program execution. Build data

//retrieves the data from the queue and stores it into an array. findFlip

//locates the bit flip, and storeData transfers data to the database
//**

public void run() {

while (running) {

buildDataO;

findFlipO;

storeData();

113

//displayDataTestO; can display the register contents to the screen

//if desired

}//end while

}//end run()

yy***

//Name: quit()

//Return: void

//Parameter: none

//Purpose: to cause the thread to die

//**

public voidquit(){

running = false;

}//end quit

//Name: findFlip()

//Return: void

//Parameter: none

//Purpose: to locate the single bit flip in the register data

public void findFlip(){

114

//toggle to set the error count to 1 whenever user resets the processors or the

//board and executes another test run.

if (HCLtoggle == false) {

errorCount = 0;

HCLtoggle = true;

}//end if

int i,j,k;

for(i = 0;i<l ; i++){

for (k = 0; k<NUM_REG; k ++){

int reglndex = k;

if ((registerData[i] [reglndex] AregisterData[i+l] [reglndex]) == 0){

if((registerData[i+1] [reglndex] AregisterData[i+2] [reglndex]) == 0) {

//HO.output += "No error was found;";

//HCLhistory.setText(HCLoutput);

//HCI.history.setCaretPosition(HCI.output.length());

}//then no error

else{ //error in Processor C

int error = registerData[i+l][reglndex]AregisterData[i+2][reglndex];

int bitCount = 0;

//the exclusive or operator will return int error, which will have

//a one, where there is a difference between the two bits in the arrays.

//Iterating through error and performing an & operation on error

//and 1, locates the bit that was flipped. The & operator will return a 1

//only if the bit that was flipped has been found.

H5

while ((error & 1)==0){

bitCount++;

error = error » 1 ;//right bitshift to examine the next bit

}//end while

errorCount ++;

HCLoutput += "\n" + logTime + " Error # " + errorCount + ": Error
found processor C, register" + k + ", bit" + bitCount + ".";

HCLhistory.setText(HCLoutput);

HCI.history.setCaretPosition(HCI.output.length());

errorProcessor = 'C;

errorRegister = k;

errorBit = bitCount;

//HCLoutput += " Error is in bit: " + bitCount;

//HCLhistory.setText(HCLoutput);

//HCI.history.setCaretPosition(HCI.output.length());

//create a connection with the Access database

try{

url = "jdbc:odbc:Registers";

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

con = DriverManager.getConnection (url,"anonymous","guest");

System.out.println("find flip db connection successfulVi");

//this for loop grabs the contents of each array element, which

//is a register data item, so it can be included as register data

//in the database
116

for (int ed = 0; ed < NUM_REG;ed++) {

int dataNumber = registerData[i+2][ed];

Statement stmt = con.createStatement();

int result = stmt.executeUpdate("INSERT INTO Registers VALUES
C"+key+"',"+bigCount+","+dataNumber+")");

bigCount++;

}

con.close();

}

catch(ClassNotFoundException cnfex) {

cnfex.printStackTrace();

}

catch (SQLException sqlex){

sqlex .prints tackTrace();

}

catch (Exception ex){

ex.printStackTrace();

}

}//end else

}//end if

else {//error was in processor B or A

if ((registerData[i][regIndex]AregisterData[i+2][regIndex]) == 0){ //Error
is in B

int errorValue =
(registerData[i] [reglndex] AregisterData[i+1] [reglndex]);

int bitCount = 0;

while ((errorValue & 1) — 0) {

bitCount++;

117

errorValue = errorValue » 1;

}//end while

errorCount++;

HCLoutput += "\n " + logTime + "Error # " + errorCount + ": Error
found processor B, register " + k + ", bit" + bitCount + ".";

HCLhistory.setText(HCLoutput);

HCI.history.setCaretPosition(HCI.output.length());

errorProcessor = W;

errorRegister = k;

errorBit = bitCount;

//send data to Access Database

try{

url = "jdbc:odbc:Registers";

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

con = DriverManager.getConnection (url,"anonymous","guest");

System.out.println("find flip db connection successful^");

for (int ed = 0; ed < NUM_REG;ed++){

bigCount++;

int dataNumber = registerData[i+l][ed];

Statement stmt = con.createStatement();

int result = stmt.executeUpdateflNSERT INTO Registers VALUES
C"+key+"V'+bigCount+,',"+dataNumber+")");

}

con.close();

}

catch(ClassNotFoundException cnfex) {

cnfex .prints tackTrace();

118

catch (SQLException sqlex){

sqlex.printStackTraceO;

}

catch (Exception ex){

ex .printS tackTrace();

}

}//end if

else{ //error was in processor A

errorCount++;

int errorValue = (registerData[i][regIndex]AregisterData[i+l][regIndex]);

int bitCount = 0;

while ((errorValue & 1) == 0) {

bitCount++;

errorValue = errorValue » 1;

}//end while

HCLoutput += "\n" + logTime + " Error # " + errorCount + ": Error
found processor A, register " + k + ", bit" + bitCount + ".";

HCLhistory.setText(HCLoutput);

HCI.history.setCaretPosition(HCI.output.length());

errorProcessor = A';

errorRegister = k;

errorBit = bitCount;

//}//end else

//HCLoutput += " Error is in bit:" + bitCount;

//HCLhistory.setText(HCLoutput);

//HCI.history.setCaretPosition(HCI.output.length());
119

//send register data from error Processor to Access data base

try{

url = "jdbc:odbc:Registers";

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

con = DriverManager.getConnection (url,"anonymous","guest");

System.out.println("find flip db connection successful^");

for (int ed = 0; ed < NUM_REG;ed++){

bigCount++;

int dataNumber = registerData[i][ed];

Statement stmt = con.createStatement();

int result = stmt.executeUpdate("INSERT INTO Registers VALUES
C"+key+"V'+bigCount+",M+dataNumber+")M);

}

con.close();

}

catch(ClassNotFoundException cnfex) {

cnfex.printStackTraceO;

}

catch (SQLException sqlex){

sqlex.printStackTraceO;

}

catch (Exception ex){

ex.printStackTrace();

}

}//end A else

}//end else

}//end for

}//end for

120

}//end findFlip

//displayDataTestO

//Return: void

//Parameter: none

//This function will allow the contents of the register to be displayed to the

//command line screen if the user desires. It is not used in the current version

//of the HCI. However, it could be called following a call to findFlip

public void displayDataTestO

{

for (int i = 0; i <3; i ++){//processors

if(i==0){

System.out.println("processer A DATA");

HCLoutput += "\n Processor A Data";

HCLhistory.setText(HCLoutput);

HCI.history.setCaretPosition(HCI.output.length());

elseif(i==l){

HCLoutput += "\n Processor B Data";

HCLhistory.setText(HCI.output);

HCI.history.setCaretPosition(HCI.output.lengthO);

System.out.println("processor B DATA");

}

else{

121

HCI.output += "\n Processor C Data";

HCLhistory.setText(HCLoutput);

HCI.history.setCaretPosition(HCI.output.lengthO);

System.out.println("Processor C Data");

}

for (int k = 0; k < NUM_REG; k++){

int reglndex = k;

System.out.print(" " +(registerData[i][reglndex]));

HCLoutput += (registerData[i][reglndex]) + " ";

HCLhistory.setText(HCLoutput);

if(reglndex%6==0){

HCLoutput += "\n";

HCLhistory.setText(HCLoutput);

HCI.history.setCaretPosition(HCI.output.length());

System.out.print("\n");

} //end if

}//end for

}//end for

}//end dataDisplayTest()

//Name: storeData

//Parameter: none

//Return: void

//This method will open a connection to the Access Database, and store the
122

//time, processor, register and bit that experienced an error into the TMRDATA

//database.

public void storeData()

{

try{

url = "jdbc:odbc:TMRData";

Class.forNameC'sun.jdbc.odbc.JdbcOdbcDriver");

con = DriverManager.getConnection (url,"anonymous","guest");

System.out.println("store data db connection successful\n");

Statement stmt = con.createStatement();

int result = stmt.executeUpdate("INSERT INTO TMRData VALUES
(M'+key+''V''+errorProcessor+''V'+e^•orRegister+^"+errorBit+,0,0;//TIME,errorProcessor,
errorRegister,errorB it)");

con.close();

}
catch(ClassNotFoundException cnfex) {

cnfex.printStackTrace();

}

catch (SQLException sqlex){

sqlex.printStackTrace();

}

catch (Exception ex) {

ex .printStackTrace();

}

}//end storeData()

123

//Name: clear Arrays

//Parameter: none

//Return: void

//This method is to be utilized in future reset implementation.

//It will set all array values to zero. It is used after a reset

//to permit the find flip algorithm to start with a clean array

public synchronized void clearArrays()

{

for(inti = 0;i<3;i++){

for (int k = 0; k < NUM_REG; k++){

int reglndex = k;

registerData[i][regIndex] = 0;

addressesfi] [reglndex] = 0;

}

}

}//end clear Arrays

}//end class

124

APPENDIX D. FIFOBUFFER.JAVA

//FifoBuffer.java

//A class that instantiates a fifo queue for the HCI to utilize to temporarily

//store error data when it is received over the serial port. The class uses

//synchronized methods to provide a mutual exclusion lock during get and

//put operations.

//Author: Susan Groening, LT, USN

//Date: 16 May 00

import java.util.*;

public class FifoBuffer {

private Vector queue = new Vector();

//Name: put

//Parameter: byte

//Return: void

//Purpose is to put a byte of data into the queue

public synchronized void put(byte data) {

queue.add(new Byte(data));

}//end put

125

//Name: get

//Parameter: None

//Return: byte

//Purpose: to get one byte of information from the queue

//**

public synchronized byte get() {

while (queue.size() == 0) {

try{

wait();

} catch (InterruptedException ex) {

}

}//end while

Byte b = (Byte) queue.remove(O);

return b.byteValue();

}//end get

//Name: isEmpty

//Parameter: None

//Return: boolean

//Purpose: returns true if the queue is empty.

public synchronized boolean isEmpty(){

126

boolean empty = false;

empty = queue.isEmpty();

return empty;

}//end isEmpty

//Name: getLength

//Parameter: None

//Return: int

//Purpose: returns the queue length.

public int getLength(){

int size = queue.size();

return size;

}//end getLength

//Name: emptyQueue

//Parameter: None

//Return: void

//Purpose: empties the queue

public synchronized void emptyQueue(){

queue.removeAHElementsO;

127

return;

}//end empty Queue

}//end FifoBuffer Class

128

APPENDIXE. TMRTESTPANELJAVA

//TMRTestPanel Class

//Purpose: At user's discretion, simulates register data that is transmitted to the

//HCI following a TMR- recognized error. User prompts program to send error

// data.

//Author: LCDR C. Eagle, USN

//Modified by LT S. Groening, USN, to transmit continuous errors to the HCI.

import javax.swing.*;

import java.awt.*;

import j ava. awt.event. *;

import java. io.*;

import javax.comm.*;

import java.util.*;

public class TmrTestPanel extends JFrame implements SerialPortEventListener {

public static final byte MODE_B = 0;

public static final byte MODE_A = 1;

public static final byte BOARD_RESET = 4;

public static final byte SYSTEM_RESET = 2;

public static String port = "";

public static int randProc;

public static int randTime;

public static boolean testing = true;

public int tester = 0;

private static final byte NUM_REG =41;

private char procs[] = {'A\ B', 'C'};

private Random rand;

129

private boolean running = true;

private JPanel buttonPanel = new JPanel();

private int registers[] = new int[NUM_REG];

private OutputStream outputStream;

private InputStream inputStream;

private SerialPort serialPort;

//constructor to create a small GUI the user can signal errors to the HCI

public TmrTestPanel(String port) {

super("Tmr Control Panel");

initPort(port);

rand = new Random(hashCode());

buttonPanel.setLayout(new GridLayout(1,4));

JButton button;

button = new JButton("QUlT");

button.addActionListener(

new ActionListener() {

public void actionPerformed(ActionEvent e) {

running = false;

System.exit(O);

}

}

);

buttonPanel.add(button);

button = new JButton("Error A");

button. addActionListener(

130

new ActionListener() {

public void actionPerformed(ActionEvent e) {

generateError(O);

}

}

);

buttonPanel.add(button);

button = new JButton("Error B':);

button.addActionListener(

new ActionListener() {

public void actionPerformed(ActionEvent e) {

generateError(l);

}

}

);

buttonPanel.add(button);

button = new JButton("Error C");

button.addActionListener(

new ActionListener() {

public void actionPerformed(ActionEvent e) {

generateError(2);

}

}

);

buttonPanel.add(button);

setContentPane(buttonPanel);

setSize(400,75);

131

setVisible(true);

}//constructor

//Name: generateError

//Return: void

//Parameter: int

//Purpose: Method used to generate the error

private void generateError(int processor) {

tester++;//variable to display the error number to the screen

//randomly select a processor, register and bit

byte badReg = (byte) rand.nextInt(NUM_REG);

byte fifoNum = (byte) rand.nextlnt(4);

byte bit = (byte) rand.nextlnt(8):

byte bitNum = (byte) (fifoNum * 8 + bit);

int startAddress = rand.nextlnt(4096 - NUM_REG);

//fill registers with data:

for (int i = 0; i < NUM_REG; i++) {

registers[i] = rand.nextlnt();

}

System.out.println("This is error number:" + tester);

System.out.println("Sending data. Error on processor:" + procs[processor]);

System.out.println(*'Error is in register:" + badReg + ", bit:" + bitNum);

System.out.println("Start address is: " + startAddress);

System.out.println();

try{

//loop for each of the three processors

for (byte proc = 0; proc < 3; proc++) {

132

//initial shift is 24 bits for fifo zero

byte shift = 24;

//count down through the four fifos for each register

for (byte fifo = 3; fifo >= 0; fifo--) {

//generate the header that precedes each fifo's data

byte header = (byte) (proc + (3 - fifo) * 4);

outputStream.write(header);

int address = startAddress;

for (byte reg = 0; reg < NUM_REG; reg++) {

//first output the appropriate byte of the address

byte add = (byte) (address » shift);

outputStream.write(add);

//then output the appropriate byte of the register

byte data = (byte) (registers[reg] »shift);

if (reg == badReg && fifo == fifoNum && proc = processor) {

//if this is the register that is supposed to be bad

//and we are writing the appropriate byte in that register

//then flip the selected bit to generate an errror

data = (byte) (data A (1« bit));

}

outputStream.write(data);

address++;

133

}

//reduce shift amount for successive fifos

shift -= 8;

//now send the control fifo

byte header = (byte) (proc +16);

outputStream.wri te(header);

for (byte reg = 0; reg < NUM_REG * 2; reg++) {

outputStream.write(O);

}

} catch (Exception ex) {

}

}//end generateError

//Name: initPort

//Return: void

//Parameter: String

//Purpose: establish a serial port

public void initPort(String port) {

CommPortldentifier portld = null;
134

try {

portld = CommPortldentifier.getPortldentifier(port);

} catch (NoSuchPortException nex) {

System.out.println(nex);

}

try{

System.out.println("Attempting to open port:" + port);

serialPort = (SerialPort) portId.open("ReaderThread", 2000);

System.out.println("Opened port:" + port);

} catch (PortlnUseException e) {

System.out.println(e);

}

try{

inputStream = serialPort.getInputStream();

outputStream = serialPort.getOutputStream();

} catch (IOException e) {

System.out.println(e);

}

try{

serialPort.addEventListener(this);

} catch (TooManyListenersException e) {

System.out.println(e);

}

serialPort.notifyOnDataAvailable(true);

try{

serialPort.setSerialPortParams(9600,

SerialPort.DATABlTS_8,

SerialPort.STOPBITS_l,

SerialPort.PARITY_NONE);

} catch (UnsupportedCommOperationException e) {

System.out.println(e);

135

}//initPort

//Name: serialEvent

//Return: void

//Parameter: SerialPortEvent

//Purpose: handle the serial port events

public void serialEvent(SerialPortEvent event) {

switch(event.getEventTypeO) {

case SerialPortEvent.BI:

case SerialPortEvent. OE:

case SerialPortEvent.FE:

case SerialPortEvent.PE:

case SerialPortEvent.CD:

case SerialPortEvent.CTS:

case SerialPortEvent.DSR:

case SerialPortEvent.RI:

caseSerialPortEvent.OUTPUT_BUFFER_EMPTY:

break;

case SerialPortEvent.DATA_ AVAILABLE:

try{

while (inputStream.available() > 0) {

byte b = (byte) (inputStream.read() & 7);

if ((b &BOARD.RESET) == BOARD.RESET) {

System.out.println("Received \"board reset\" command");

running = false; //to stop data generation

System.exit(O);// = false;/7to stop testing

}
136

else if ((b & SYSTEM_RESET) == SYSTEM.RESET) {

System.out.println("Received \"system resetV command");

running = false; //to stop data generation

System.exit(0);//testing = false;//to stop testing

}

elseif(b==MODE_B){

System.out.println("Received \"run mode B\" command");

}

else {

//process of elimination

System.out.println("Received V'run mode A\" command");

}

}

} catch (IOException e) {

System.out.println(e);

}

break;

}

}//end SerialPortEvent

//Name: Main

//Return: void

//Parameter: String

//Purpose: instantiate the GUI and, if desired, the ability to create

//continuous errors, or a fixed number of randomly generated errors
//Hi****************************** **********^

public static void main(String args[]) {
137

//implement with this if using command line arguments.

/*if(args.length!=l){

System.out.println("Usage: Java TmrTestPanel portName");

System.exit(O);

}

*/

TmrTestPanel.port = "COM 1";

TmrTestPanel tmr = new TmrTestPanel(port);

/*//while(testing){

//system test

1st For loop will generate 10 errors, spaced randomly apart

for (int ix = 0; ix <2; ix++){

randProc = (int)(Math.random()*3);//0 = Proc A, 1 = Proc B, 2 = Proc C

randTime = (int)(Math.random()* 10000000);

for(int cix = 0; cix <10000000;cix++){

if(randTime == cix){ //will generate error at randTime

tmr.generateError(randProc);

}//end if

}//end for

}//end for

//generate rapidly occuring errors

for (int ix = 0; ix <20; ix++){

randProc = (int)(Math.random()*3);//0 = Proc A, 1 = Proc B, 2 = Proc C

randTime = (int)(Math.random()*100);

138

for(int cix = 0; cix <100;cix++){

if(randTime == cix){ //will generate error at randTime

tmr .generateError(rar) dProc);

}//end if

}//end for

}//end for

//generate rapid errors

for(int cix = 0; cix <20;cix++){

randProc = (int)(Math.random()*3);//0 = Proc A, 1 = Proc B, 2 = Proc C

tmr.generateError(randProc);

}//end for

//generate random errors spaced apart

for (int ix = 0; ix <5; ix++){

randProc = (int)(Math.random()*3);//0 = Proc A, 1 = Proc B, 2 = Proc C

randTime = (int)(Math.random()* 100000000);

for(int cix = 0; cix <100000000;cix++){

if (randTime == cix){ //will generate error at randTime

tmr.generateError(randProc);

}//end if

}//end for

}//end for

//}//end while

*/

139

}//end Main

}//end Class

140

APPENDIX F. BUILDING A PROJECT FROM A NEW BSP

1. Place all required files in the target/config/bspname Directory. Ensure all

required routines are included (for a list of required files and routines, see

Tornado BSP Developer's Kit for VxWorks).

2. Select Start => Programs => Tornado2 => Tornado

3. File => New Project will bring up the following window:

Create Project in New/Existing Workspace Uta

Recent INf™ .1] Existing j

What would you like to do?

*& Create a bootable VxWorks image (custom configured)
'3f Create downloadable application modules for VxWorks

OK

Cancel

Help

W Show this window on startup

Select "Create a bootable VxWorks image (custom configured)" and hit OK.

141

4. The following window will appear:

Create a bootable VxWorks image (custom configured): step 1

- Project -

Name:

jProjectO

Location:

IC: \T ornado\target\proj\ProjectO

' Project description (optional)
i

<Enter description here>

r Workspace :

:f Add to current Workspace

<•" Add to a New or Existing Workspace

IC: \T omado\targec\proj\WorkspaceO. wsp

Help Cancel < Back Next>

BEI

l

Finish J
Select a name for the Project, Location, Project description, and Workspace for

the Project and hit the "Next" button. The rest of this appendix will assume the

default names and locations were selected.

142

5. A window similar to the following window will appear. The "A BSP" radio

button has been selected as well as the "tmr3081" directory. Make sure you

make these changes and hit the "Next" button.

Create a bootable VxWorks image (custom configured): step 2 im
Specify the Board Support Package (BSP) which will provide
board-specific code needed by VxWorks. Alternatively, you may
base your Project on an existing B ootable Project.

Source Files will appear in your new Project. Only those which
are dynamically generated will be duplicated in the new Project's
directory.

Would you like to base your project on:

C An existing project

<5- A BSP

Help Cancel

simpc_vx.wp; ■ _*j

C:Mo::i<;do\tc!,get\proj\simpc_vx.SsiiTipc_vx.v^j ... |

]CATornado\target\config\tmr3081

<Back Next > | Finish

143

6. The following confirmation window will appear. Confirm your information

and select the "Finish".

Create a bootable VxWorks image (custom configured): step 3

The Project Creation Wizard will now create your Bootable
Project.

Mm

i Workspace

| Project

.'} Basis BSP

Help

]C:\Tomadc\target\proj\Workspace0.wsp

j C: \Tornado\targeftproj\ProjectO''ProjectO. wpj

j C: VT ornado\target\conf igStmr3081 ;

Cancel <Back Next:« Finish

144

7. The New Project will be built and the following screen will appear:

■S Tornado • Woikspace: WoikspaceO

File Edit View Project Build Debug J_ools Window Help
□SB

D ö1 S X '33 §s s f v?

| zi © ->■: ,--• ssa w \

Z - B 2 J i?Ml T S 1

a •£. cc ■& & * |

£j JLJ B'1 JElfollfijoH B & Ii3>

I is Woikspace: WoikspaceO WEE3

iBuJdSpec |default 21

Ip WoikspaceO

K^^Si fvSsSe*

_l.ll
Lfi!gk_Ji VxWorks \ Buildsl

|§ Tornado - Woikspace..^

You now have a project built using your BSP.

145

THIS PAGE INTENTIONALLY LEFT BLANK

146

LIST OF REFERENCES

Artesyn Technologies. Choosing an OS for Embedded Real-Time Application.
1998. Online. White Paper. Internet. 12 Dec 99. Available
http://www.artesvn.com/cp/html/choosingos.html

Jun, Sun-Mi. Real Time Operating system in Embedded System and Case Study:
pSOSvstem Overview. 1998. Online. Internet. 12 Dec 99. Available
http://iuno.cs.pusan.ac.kr/TechnicalReport/psos/rtos psosvstem.html

Hawley, Greg. Selecting a Real-Time Operating System. 1999. Online. Embedded
Systems Programming. Internet. 12 Dec 99. Available
http://www.embedded.com/1999/9903/9903sr.htm

Hix, Deborah, and H. Rex Hartson. Developing User Interfaces: Ensuring
Usability Through Product and Process. New York: Wiley, 1993.

Payne, John C. "Fault Tolerant Computing Testbed: A Tool For the Analysis of
Hardware and Software Fault Handling Techniques." Naval Postgraduate School, 1998.

Schmorrow, Dylan D. "A Benchmark Usability Study of the Tactical Decision
Making Under Stress Decision Support System". Naval Postgraduate School, 1998.

Sellers, J. J. Understanding Space. An Introduction To Astronautics. New York:
McGraw-Hill, 1994.

Shneiderman, B. Designing the user interface: Strategies for effective human-
computer interaction. Reading, MA: Addison-Wesley, 1997.

Stallings, William. Operating Systems: Internals and Design Principles. New
Jersey: Prentice-Hall, 1998.

Storey, Neil. Safety-Critical Computer Systems. Reading, MA: Addison-Wesley,
1996.

Wind River Systems, Inc. Tornado™ User's Guide (Windows Version). 1st ed.
1999.

—.Tornado™ BSP Developer's Kit for VxWorks® User's Guide. Tornado 2.0. Is

ed. 1999.

147

THIS PAGE INTENTIONALLY LEFT BLANK

148

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
8725 John J. Kingman Road, Suite 0944
Ft. Belvoir, VA 22060-6218

Dudley Knox Library
Naval Postgraduate School
411 Dyer Road
Monterey, CA 93943-5101

Director, Training and Education.
MCCDC, Code C46
1019 Elliot Road
Quantico,VA 22134-5027

Director, Marine Corps Research Center
MCCDC, Code C40RC
2040 Broadway Street
Quantico,VA 22134-5107

5. Marine Corps Representative
Naval Postgraduate School
Code 037, Bldg. 330, Ingersoll Hall, Room 116
555 Dyer Road
Monterey, CA 93943

6. Marine Corps Tactical Systems Support Activity.
Technical Advisory Branch
Attn: Librarian
Box 555171
Camp Pendleton, CA 92055-5080

Chairman CodeCS
Naval Postgraduate School
833 Dyer Road
Monterey, CA 93943

149

Professor Bret Michael
Naval Postgraduate School
Code CS/Mj
833 Dyer Road
Monterey, CA 93943

9. Professor Alan Ross
Naval Postgraduate School
Code SP/Ra
833 Dyer Road
Monterey, CA 93943

10. Professor Hersch Loomis ...
Naval Postgraduate School
Code EC/Lm
833 Dyer Road
Monterey, CA 93943

11. LCDR Chris Eagle
Naval Postgraduate School
Code CS/Ce
833 Dyer Road
Monterey, CA 93943

12. LT Susan E. Groening.
207 Remagen Road
Seaside, CA 93955

13. Capt Kimberly D. Whitehouse, USMC.
18 Larkwood Court
Stafford, VA 22554

150

